Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116163045> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3116163045 abstract "Globally, Dengue is one of the most quickly spreading vector-borne viral sicknesses with an expanding number of territories in danger. Many researchers have worked on different measures to control and prevent the spread of disease. The main objective of the research is to develop a forecast model to control the outbreak of dengue disease that will give an opportunity for medical professionals in designing, planning and handling the disease at an early stage. Moreover, the improvement of the assortment of strategies for determining and predictive modeling utilizing measurable, numerical examination of machine learning was studied. There are mainly six issues need to be solved in determination of dengue disease, those are exploring data sources, analyzing data sources, techniques for data preparation, data representation, dengue forecasting models and evaluation approaches. A major limitation of the traditional methods is that these methods need large volumes of data for data processing, to improve the dynamic characteristics. From the review of existing methods, it can be clearly stated that the K-means clustering method with fuzzy based system has high accuracy and it significantly improves the analysis/prediction of dengue disease. The k-means clustering algorithm separates the dengue diseased patient records into k divisions. As the dengue dataset were fully clustered, k-means clustering method improves the analysis or prediction of dengue disease. Similarly, the fuzzy based system The input factors and changing over these informational factors into fuzzy membership functions will make a better decision making in predicting dengue forecasting model. Thus, the issues stated from comprehensive research provide a useful platform for public health research and epidemiology." @default.
- W3116163045 created "2021-01-05" @default.
- W3116163045 creator A5090998828 @default.
- W3116163045 date "2020-10-30" @default.
- W3116163045 modified "2023-09-23" @default.
- W3116163045 title "Development of Prediction and Forecasting Model for Dengue Disease using Machine Learning Algorithms" @default.
- W3116163045 cites W1541250240 @default.
- W3116163045 cites W1953406501 @default.
- W3116163045 cites W2017539781 @default.
- W3116163045 cites W2049701422 @default.
- W3116163045 cites W2100969426 @default.
- W3116163045 cites W2610135452 @default.
- W3116163045 cites W2674025757 @default.
- W3116163045 cites W2801568022 @default.
- W3116163045 cites W2801896044 @default.
- W3116163045 cites W2886196702 @default.
- W3116163045 cites W2892147811 @default.
- W3116163045 cites W2904058395 @default.
- W3116163045 cites W2906131306 @default.
- W3116163045 cites W2910885921 @default.
- W3116163045 cites W2953172241 @default.
- W3116163045 cites W2954903900 @default.
- W3116163045 cites W2966870404 @default.
- W3116163045 cites W2979796718 @default.
- W3116163045 cites W2993007687 @default.
- W3116163045 cites W3013151904 @default.
- W3116163045 cites W3018067621 @default.
- W3116163045 cites W3044019043 @default.
- W3116163045 doi "https://doi.org/10.1109/discover50404.2020.9278079" @default.
- W3116163045 hasPublicationYear "2020" @default.
- W3116163045 type Work @default.
- W3116163045 sameAs 3116163045 @default.
- W3116163045 citedByCount "2" @default.
- W3116163045 countsByYear W31161630452021 @default.
- W3116163045 countsByYear W31161630452022 @default.
- W3116163045 crossrefType "proceedings-article" @default.
- W3116163045 hasAuthorship W3116163045A5090998828 @default.
- W3116163045 hasConcept C119857082 @default.
- W3116163045 hasConcept C12267149 @default.
- W3116163045 hasConcept C124101348 @default.
- W3116163045 hasConcept C154945302 @default.
- W3116163045 hasConcept C203014093 @default.
- W3116163045 hasConcept C41008148 @default.
- W3116163045 hasConcept C533803919 @default.
- W3116163045 hasConcept C58166 @default.
- W3116163045 hasConcept C71924100 @default.
- W3116163045 hasConcept C73555534 @default.
- W3116163045 hasConceptScore W3116163045C119857082 @default.
- W3116163045 hasConceptScore W3116163045C12267149 @default.
- W3116163045 hasConceptScore W3116163045C124101348 @default.
- W3116163045 hasConceptScore W3116163045C154945302 @default.
- W3116163045 hasConceptScore W3116163045C203014093 @default.
- W3116163045 hasConceptScore W3116163045C41008148 @default.
- W3116163045 hasConceptScore W3116163045C533803919 @default.
- W3116163045 hasConceptScore W3116163045C58166 @default.
- W3116163045 hasConceptScore W3116163045C71924100 @default.
- W3116163045 hasConceptScore W3116163045C73555534 @default.
- W3116163045 hasLocation W31161630451 @default.
- W3116163045 hasOpenAccess W3116163045 @default.
- W3116163045 hasPrimaryLocation W31161630451 @default.
- W3116163045 hasRelatedWork W10356211 @default.
- W3116163045 hasRelatedWork W1086253 @default.
- W3116163045 hasRelatedWork W12189470 @default.
- W3116163045 hasRelatedWork W14828854 @default.
- W3116163045 hasRelatedWork W5405742 @default.
- W3116163045 hasRelatedWork W621929 @default.
- W3116163045 hasRelatedWork W6984603 @default.
- W3116163045 hasRelatedWork W8197146 @default.
- W3116163045 hasRelatedWork W845024 @default.
- W3116163045 hasRelatedWork W6520261 @default.
- W3116163045 isParatext "false" @default.
- W3116163045 isRetracted "false" @default.
- W3116163045 magId "3116163045" @default.
- W3116163045 workType "article" @default.