Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116201721> ?p ?o ?g. }
- W3116201721 endingPage "2556" @default.
- W3116201721 startingPage "2545" @default.
- W3116201721 abstract "Depression is a mental disorder with emotional and cognitive dysfunction. The main clinical characteristic of depression is significant and persistent low mood. As reported, depression is a leading cause of disability worldwide. Moreover, the rate of recognition and treatment for depression is low. Therefore, the detection and treatment of depression are urgent. Multichannel electroencephalogram (EEG) signals, which reflect the working status of the human brain, can be used to develop an objective and promising tool for augmenting the clinical effects in the diagnosis and detection of depression. However, when a large number of EEG channels are acquired, the information redundancy and computational complexity of the EEG signals increase; thus, effective channel selection algorithms are required not only for machine learning feasibility, but also for practicality in clinical depression detection. Consequently, we propose an optimal channel selection method for EEG-based depression detection via kernel-target alignment (KTA) to effectively resolve the abovementioned issues. In this method, we consider a modified version KTA that can measure the similarity between the kernel matrix for channel selection and the target matrix as an objective function and optimize the objective function by a proposed optimal channel selection strategy. Experimental results on two EEG datasets show that channel selection can effectively increase the classification performance and that even if we rely only on a small subset of channels, the results are still acceptable. The selected channels are in line with the expected latent cortical activity patterns in depression detection. Moreover, the experimental results demonstrate that our method outperforms the state-of-the-art channel selection approaches." @default.
- W3116201721 created "2021-01-05" @default.
- W3116201721 creator A5005825479 @default.
- W3116201721 creator A5022387395 @default.
- W3116201721 creator A5038696152 @default.
- W3116201721 creator A5056476686 @default.
- W3116201721 creator A5061242940 @default.
- W3116201721 creator A5062623705 @default.
- W3116201721 creator A5064435849 @default.
- W3116201721 creator A5090196175 @default.
- W3116201721 date "2021-07-01" @default.
- W3116201721 modified "2023-10-17" @default.
- W3116201721 title "An Optimal Channel Selection for EEG-Based Depression Detection via Kernel-Target Alignment" @default.
- W3116201721 cites W1877153489 @default.
- W3116201721 cites W1984183833 @default.
- W3116201721 cites W1985613492 @default.
- W3116201721 cites W2003938582 @default.
- W3116201721 cites W2012499070 @default.
- W3116201721 cites W2014683958 @default.
- W3116201721 cites W2018010458 @default.
- W3116201721 cites W2025751302 @default.
- W3116201721 cites W2039113286 @default.
- W3116201721 cites W2039643450 @default.
- W3116201721 cites W2053099699 @default.
- W3116201721 cites W2056083531 @default.
- W3116201721 cites W2057812517 @default.
- W3116201721 cites W2064611362 @default.
- W3116201721 cites W2065494735 @default.
- W3116201721 cites W2077770566 @default.
- W3116201721 cites W2085099861 @default.
- W3116201721 cites W2087178630 @default.
- W3116201721 cites W2128495200 @default.
- W3116201721 cites W2136397596 @default.
- W3116201721 cites W2138820260 @default.
- W3116201721 cites W2153635508 @default.
- W3116201721 cites W2163918328 @default.
- W3116201721 cites W2168901492 @default.
- W3116201721 cites W2346610281 @default.
- W3116201721 cites W2521552716 @default.
- W3116201721 cites W2558919063 @default.
- W3116201721 cites W2738999855 @default.
- W3116201721 cites W2790114788 @default.
- W3116201721 cites W2889847952 @default.
- W3116201721 cites W2899192547 @default.
- W3116201721 cites W2910282992 @default.
- W3116201721 cites W2919418213 @default.
- W3116201721 cites W2944339246 @default.
- W3116201721 cites W2952715783 @default.
- W3116201721 cites W2954308429 @default.
- W3116201721 cites W2960585436 @default.
- W3116201721 cites W2964546587 @default.
- W3116201721 cites W2967182021 @default.
- W3116201721 cites W2970963824 @default.
- W3116201721 cites W4235272869 @default.
- W3116201721 cites W4241710964 @default.
- W3116201721 cites W4255788608 @default.
- W3116201721 doi "https://doi.org/10.1109/jbhi.2020.3045718" @default.
- W3116201721 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33338023" @default.
- W3116201721 hasPublicationYear "2021" @default.
- W3116201721 type Work @default.
- W3116201721 sameAs 3116201721 @default.
- W3116201721 citedByCount "28" @default.
- W3116201721 countsByYear W31162017212021 @default.
- W3116201721 countsByYear W31162017212022 @default.
- W3116201721 countsByYear W31162017212023 @default.
- W3116201721 crossrefType "journal-article" @default.
- W3116201721 hasAuthorship W3116201721A5005825479 @default.
- W3116201721 hasAuthorship W3116201721A5022387395 @default.
- W3116201721 hasAuthorship W3116201721A5038696152 @default.
- W3116201721 hasAuthorship W3116201721A5056476686 @default.
- W3116201721 hasAuthorship W3116201721A5061242940 @default.
- W3116201721 hasAuthorship W3116201721A5062623705 @default.
- W3116201721 hasAuthorship W3116201721A5064435849 @default.
- W3116201721 hasAuthorship W3116201721A5090196175 @default.
- W3116201721 hasConcept C111919701 @default.
- W3116201721 hasConcept C114614502 @default.
- W3116201721 hasConcept C118552586 @default.
- W3116201721 hasConcept C119857082 @default.
- W3116201721 hasConcept C127162648 @default.
- W3116201721 hasConcept C148483581 @default.
- W3116201721 hasConcept C152124472 @default.
- W3116201721 hasConcept C153180895 @default.
- W3116201721 hasConcept C154945302 @default.
- W3116201721 hasConcept C15744967 @default.
- W3116201721 hasConcept C2780733359 @default.
- W3116201721 hasConcept C33923547 @default.
- W3116201721 hasConcept C41008148 @default.
- W3116201721 hasConcept C522805319 @default.
- W3116201721 hasConcept C74193536 @default.
- W3116201721 hasConcept C76155785 @default.
- W3116201721 hasConcept C81917197 @default.
- W3116201721 hasConceptScore W3116201721C111919701 @default.
- W3116201721 hasConceptScore W3116201721C114614502 @default.
- W3116201721 hasConceptScore W3116201721C118552586 @default.
- W3116201721 hasConceptScore W3116201721C119857082 @default.
- W3116201721 hasConceptScore W3116201721C127162648 @default.
- W3116201721 hasConceptScore W3116201721C148483581 @default.
- W3116201721 hasConceptScore W3116201721C152124472 @default.