Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116252352> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W3116252352 abstract "City Health Office in Indonesia is creating a health report every year, describing the condition of the city public health. The report is used as the source of determining the city health index. The construction of a city health development index is important to produce an objective formula. In this study, the classification method Random Forest is used to developing a proper model for prediction and analysis of the health index of a city. The goal of this work is to find a prediction model to make a more accurate prediction and reducing errors in dealing with the city health index. The performance of the model is evaluated by using three parameters: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The research shows that the model of Random Forest with a 15 percent data test by using 200 decision trees gives the best results with the value of MAE = 0.108, MSE = 0.035 and RMSE = 0.187, and the Accuracy = 94.6 percent." @default.
- W3116252352 created "2021-01-05" @default.
- W3116252352 creator A5002016093 @default.
- W3116252352 creator A5006231724 @default.
- W3116252352 creator A5062801682 @default.
- W3116252352 date "2020-11-03" @default.
- W3116252352 modified "2023-10-14" @default.
- W3116252352 title "City Health Prediction Model Using Random Forest Classification Method" @default.
- W3116252352 cites W1520812622 @default.
- W3116252352 cites W166622706 @default.
- W3116252352 cites W2103069675 @default.
- W3116252352 cites W2117019857 @default.
- W3116252352 cites W2155261478 @default.
- W3116252352 cites W2216946510 @default.
- W3116252352 cites W2911964244 @default.
- W3116252352 doi "https://doi.org/10.1109/icic50835.2020.9288542" @default.
- W3116252352 hasPublicationYear "2020" @default.
- W3116252352 type Work @default.
- W3116252352 sameAs 3116252352 @default.
- W3116252352 citedByCount "3" @default.
- W3116252352 countsByYear W31162523522022 @default.
- W3116252352 countsByYear W31162523522023 @default.
- W3116252352 crossrefType "proceedings-article" @default.
- W3116252352 hasAuthorship W3116252352A5002016093 @default.
- W3116252352 hasAuthorship W3116252352A5006231724 @default.
- W3116252352 hasAuthorship W3116252352A5062801682 @default.
- W3116252352 hasConcept C119857082 @default.
- W3116252352 hasConcept C154945302 @default.
- W3116252352 hasConcept C169258074 @default.
- W3116252352 hasConcept C41008148 @default.
- W3116252352 hasConceptScore W3116252352C119857082 @default.
- W3116252352 hasConceptScore W3116252352C154945302 @default.
- W3116252352 hasConceptScore W3116252352C169258074 @default.
- W3116252352 hasConceptScore W3116252352C41008148 @default.
- W3116252352 hasLocation W31162523521 @default.
- W3116252352 hasOpenAccess W3116252352 @default.
- W3116252352 hasPrimaryLocation W31162523521 @default.
- W3116252352 hasRelatedWork W2911455822 @default.
- W3116252352 hasRelatedWork W3018959556 @default.
- W3116252352 hasRelatedWork W3174196512 @default.
- W3116252352 hasRelatedWork W3211546796 @default.
- W3116252352 hasRelatedWork W4281560664 @default.
- W3116252352 hasRelatedWork W4281616679 @default.
- W3116252352 hasRelatedWork W4293525103 @default.
- W3116252352 hasRelatedWork W4308191010 @default.
- W3116252352 hasRelatedWork W4318350883 @default.
- W3116252352 hasRelatedWork W4323021782 @default.
- W3116252352 isParatext "false" @default.
- W3116252352 isRetracted "false" @default.
- W3116252352 magId "3116252352" @default.
- W3116252352 workType "article" @default.