Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116331388> ?p ?o ?g. }
- W3116331388 endingPage "3873" @default.
- W3116331388 startingPage "3864" @default.
- W3116331388 abstract "Based on the current clinical routine, we aimed to develop a novel deep learning model to distinguish coronavirus disease 2019 (COVID-19) pneumonia from other types of pneumonia and validate it with a real-world dataset (RWD).A total of 563 chest CT scans of 380 patients (227/380 were diagnosed with COVID-19 pneumonia) from 5 hospitals were collected to train our deep learning (DL) model. Lung regions were extracted by U-net, then transformed and fed to pre-trained ResNet-50-based IDANNet (Identification and Analysis of New covid-19 Net) to produce a diagnostic probability. Fivefold cross-validation was employed to validate the application of our model. Another 318 scans of 316 patients (243/316 were diagnosed with COVID-19 pneumonia) from 2 other hospitals were enrolled prospectively as the RWDs to testify our DL model's performance and compared it with that from 3 experienced radiologists.A three-dimensional DL model was successfully established. The diagnostic threshold to differentiate COVID-19 and non-COVID-19 pneumonia was 0.685 with an AUC of 0.906 (95% CI: 0.886-0.913) in the internal validation group. In the RWD cohort, our model achieved an AUC of 0.868 (95% CI: 0.851-0.876) with the sensitivity of 0.811 and the specificity of 0.822, non-inferior to the performance of 3 experienced radiologists, suggesting promising clinical practical usage.The established DL model was able to achieve accurate identification of COVID-19 pneumonia from other suspected ones in the real-world situation, which could become a reliable tool in clinical routine.• In an internal validation set, our DL model achieved the best performance to differentiate COVID-19 from non-COVID-19 pneumonia with a sensitivity of 0.836, a specificity of 0.800, and an AUC of 0.906 (95% CI: 0.886-0.913) when the threshold was set at 0.685. • In the prospective RWD cohort, our DL diagnostic model achieved a sensitivity of 0.811, a specificity of 0.822, and AUC of 0.868 (95% CI: 0.851-0.876), non-inferior to the performance of 3 experienced radiologists. • The attention heatmaps were fully generated by the model without additional manual annotation and the attention regions were highly aligned with the ROIs acquired by human radiologists for diagnosis." @default.
- W3116331388 created "2021-01-05" @default.
- W3116331388 creator A5001877137 @default.
- W3116331388 creator A5015188731 @default.
- W3116331388 creator A5020370754 @default.
- W3116331388 creator A5034776974 @default.
- W3116331388 creator A5042625536 @default.
- W3116331388 creator A5052116812 @default.
- W3116331388 creator A5061264896 @default.
- W3116331388 creator A5084816297 @default.
- W3116331388 creator A5087523144 @default.
- W3116331388 date "2020-12-28" @default.
- W3116331388 modified "2023-10-02" @default.
- W3116331388 title "The usage of deep neural network improves distinguishing COVID-19 from other suspected viral pneumonia by clinicians on chest CT: a real-world study" @default.
- W3116331388 cites W2103210722 @default.
- W3116331388 cites W2557738935 @default.
- W3116331388 cites W2560688864 @default.
- W3116331388 cites W2806717565 @default.
- W3116331388 cites W2967229796 @default.
- W3116331388 cites W3001456238 @default.
- W3116331388 cites W3003790823 @default.
- W3116331388 cites W3006110666 @default.
- W3116331388 cites W3006643024 @default.
- W3116331388 cites W3007273493 @default.
- W3116331388 cites W3007497549 @default.
- W3116331388 cites W3007764760 @default.
- W3116331388 cites W3008028633 @default.
- W3116331388 cites W3008218702 @default.
- W3116331388 cites W3008827533 @default.
- W3116331388 cites W3008985036 @default.
- W3116331388 cites W3011149445 @default.
- W3116331388 cites W3013552645 @default.
- W3116331388 cites W3013681994 @default.
- W3116331388 cites W3013732976 @default.
- W3116331388 cites W3014561994 @default.
- W3116331388 cites W3017403618 @default.
- W3116331388 cites W3018302085 @default.
- W3116331388 cites W3020653337 @default.
- W3116331388 cites W4206798761 @default.
- W3116331388 doi "https://doi.org/10.1007/s00330-020-07553-7" @default.
- W3116331388 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7769567" @default.
- W3116331388 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33372243" @default.
- W3116331388 hasPublicationYear "2020" @default.
- W3116331388 type Work @default.
- W3116331388 sameAs 3116331388 @default.
- W3116331388 citedByCount "13" @default.
- W3116331388 countsByYear W31163313882021 @default.
- W3116331388 countsByYear W31163313882022 @default.
- W3116331388 countsByYear W31163313882023 @default.
- W3116331388 crossrefType "journal-article" @default.
- W3116331388 hasAuthorship W3116331388A5001877137 @default.
- W3116331388 hasAuthorship W3116331388A5015188731 @default.
- W3116331388 hasAuthorship W3116331388A5020370754 @default.
- W3116331388 hasAuthorship W3116331388A5034776974 @default.
- W3116331388 hasAuthorship W3116331388A5042625536 @default.
- W3116331388 hasAuthorship W3116331388A5052116812 @default.
- W3116331388 hasAuthorship W3116331388A5061264896 @default.
- W3116331388 hasAuthorship W3116331388A5084816297 @default.
- W3116331388 hasAuthorship W3116331388A5087523144 @default.
- W3116331388 hasBestOaLocation W31163313881 @default.
- W3116331388 hasConcept C118552586 @default.
- W3116331388 hasConcept C126322002 @default.
- W3116331388 hasConcept C126838900 @default.
- W3116331388 hasConcept C16568411 @default.
- W3116331388 hasConcept C177713679 @default.
- W3116331388 hasConcept C2777914695 @default.
- W3116331388 hasConcept C2778158872 @default.
- W3116331388 hasConcept C2779134260 @default.
- W3116331388 hasConcept C2779889316 @default.
- W3116331388 hasConcept C3007834351 @default.
- W3116331388 hasConcept C3008058167 @default.
- W3116331388 hasConcept C513090587 @default.
- W3116331388 hasConcept C524204448 @default.
- W3116331388 hasConcept C71924100 @default.
- W3116331388 hasConcept C72563966 @default.
- W3116331388 hasConceptScore W3116331388C118552586 @default.
- W3116331388 hasConceptScore W3116331388C126322002 @default.
- W3116331388 hasConceptScore W3116331388C126838900 @default.
- W3116331388 hasConceptScore W3116331388C16568411 @default.
- W3116331388 hasConceptScore W3116331388C177713679 @default.
- W3116331388 hasConceptScore W3116331388C2777914695 @default.
- W3116331388 hasConceptScore W3116331388C2778158872 @default.
- W3116331388 hasConceptScore W3116331388C2779134260 @default.
- W3116331388 hasConceptScore W3116331388C2779889316 @default.
- W3116331388 hasConceptScore W3116331388C3007834351 @default.
- W3116331388 hasConceptScore W3116331388C3008058167 @default.
- W3116331388 hasConceptScore W3116331388C513090587 @default.
- W3116331388 hasConceptScore W3116331388C524204448 @default.
- W3116331388 hasConceptScore W3116331388C71924100 @default.
- W3116331388 hasConceptScore W3116331388C72563966 @default.
- W3116331388 hasFunder F4320309612 @default.
- W3116331388 hasIssue "6" @default.
- W3116331388 hasLocation W31163313881 @default.
- W3116331388 hasLocation W31163313882 @default.
- W3116331388 hasLocation W31163313883 @default.
- W3116331388 hasOpenAccess W3116331388 @default.
- W3116331388 hasPrimaryLocation W31163313881 @default.
- W3116331388 hasRelatedWork W3004511262 @default.