Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116351640> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3116351640 abstract "Understanding tumor's evolution under chemotherapy is central in the design of cancer therapy regimens. Drug resistance poses a major obstacle in the battle against most types of cancer and therapy design. Personalized treatments have the potential to offer greater effectiveness and the ability to prevent and circumvent drug resistance. In this study, we introduce PERFECTO (Prediction of Extended Response and Growth Functions for Estimating ChemoTherapy Outcomes), a machine learning system capable of extracting the tumor growth function and response under chemotherapy. Exploiting the underlying correlations in the clinical data, the system captures the statistical peculiarities of tumor growth in-vivo without explicit modeling of the tumor microenvironment and expensive clinical investigations. We demonstrate the learning capabilities of PERFECTO in predicting unperturbed tumor growth and chemotherapy tumor growth from multiple clinical breast cancer datasets. We postulate that predictability is the key. Using PERFECTO clinicians will be able to improve treatment plans for patient-specific parameters from individual tumors. Our preliminary experiments on in-vitro, animal, and in-vivo datasets, shown that, with a high degree of confidence, PERFECTO is able to estimate treatment effectiveness through an accurate tumor growth response prediction, independent of the breast cancer cell line. This in turn can alleviate the need of ordering extra clinical tests or any extra wait time before treatment initiation." @default.
- W3116351640 created "2021-01-05" @default.
- W3116351640 creator A5054645573 @default.
- W3116351640 creator A5058528561 @default.
- W3116351640 date "2020-12-30" @default.
- W3116351640 modified "2023-10-17" @default.
- W3116351640 title "PERFECTO: Prediction of Extended Response and Growth Functions for Estimating Chemotherapy Outcomes in Breast Cancer" @default.
- W3116351640 cites W1520571564 @default.
- W3116351640 cites W154646596 @default.
- W3116351640 cites W1949589692 @default.
- W3116351640 cites W1987264156 @default.
- W3116351640 cites W1989792740 @default.
- W3116351640 cites W2008719379 @default.
- W3116351640 cites W2013394982 @default.
- W3116351640 cites W2018440559 @default.
- W3116351640 cites W2036861430 @default.
- W3116351640 cites W2073091713 @default.
- W3116351640 cites W2079142824 @default.
- W3116351640 cites W2111952125 @default.
- W3116351640 cites W2119249830 @default.
- W3116351640 cites W2123669082 @default.
- W3116351640 cites W2128458647 @default.
- W3116351640 cites W2132504853 @default.
- W3116351640 cites W2141257680 @default.
- W3116351640 cites W2163745544 @default.
- W3116351640 cites W2278685458 @default.
- W3116351640 cites W2473549004 @default.
- W3116351640 cites W2560635244 @default.
- W3116351640 cites W2601380465 @default.
- W3116351640 cites W2945791915 @default.
- W3116351640 cites W2951240551 @default.
- W3116351640 cites W2963017149 @default.
- W3116351640 cites W2987901253 @default.
- W3116351640 cites W3004060585 @default.
- W3116351640 cites W3044857394 @default.
- W3116351640 cites W3209703089 @default.
- W3116351640 cites W3210080732 @default.
- W3116351640 cites W628143856 @default.
- W3116351640 cites W65738273 @default.
- W3116351640 doi "https://doi.org/10.1101/2020.12.29.424759" @default.
- W3116351640 hasPublicationYear "2020" @default.
- W3116351640 type Work @default.
- W3116351640 sameAs 3116351640 @default.
- W3116351640 citedByCount "0" @default.
- W3116351640 crossrefType "posted-content" @default.
- W3116351640 hasAuthorship W3116351640A5054645573 @default.
- W3116351640 hasAuthorship W3116351640A5058528561 @default.
- W3116351640 hasBestOaLocation W31163516401 @default.
- W3116351640 hasConcept C121608353 @default.
- W3116351640 hasConcept C126322002 @default.
- W3116351640 hasConcept C143998085 @default.
- W3116351640 hasConcept C2776694085 @default.
- W3116351640 hasConcept C530470458 @default.
- W3116351640 hasConcept C535046627 @default.
- W3116351640 hasConcept C71924100 @default.
- W3116351640 hasConceptScore W3116351640C121608353 @default.
- W3116351640 hasConceptScore W3116351640C126322002 @default.
- W3116351640 hasConceptScore W3116351640C143998085 @default.
- W3116351640 hasConceptScore W3116351640C2776694085 @default.
- W3116351640 hasConceptScore W3116351640C530470458 @default.
- W3116351640 hasConceptScore W3116351640C535046627 @default.
- W3116351640 hasConceptScore W3116351640C71924100 @default.
- W3116351640 hasLocation W31163516401 @default.
- W3116351640 hasOpenAccess W3116351640 @default.
- W3116351640 hasPrimaryLocation W31163516401 @default.
- W3116351640 hasRelatedWork W13151608 @default.
- W3116351640 hasRelatedWork W13154270 @default.
- W3116351640 hasRelatedWork W14561912 @default.
- W3116351640 hasRelatedWork W16661828 @default.
- W3116351640 hasRelatedWork W16746045 @default.
- W3116351640 hasRelatedWork W1722690 @default.
- W3116351640 hasRelatedWork W18725558 @default.
- W3116351640 hasRelatedWork W2422317 @default.
- W3116351640 hasRelatedWork W5453825 @default.
- W3116351640 hasRelatedWork W9309986 @default.
- W3116351640 isParatext "false" @default.
- W3116351640 isRetracted "false" @default.
- W3116351640 magId "3116351640" @default.
- W3116351640 workType "article" @default.