Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116425700> ?p ?o ?g. }
- W3116425700 abstract "In this paper, we investigate a solution to the problem of underwater pipeline segmentation, based on an unbalanced dataset generated by a deterministic algorithm which employs computer vision techniques. We use manually selected masks to train two types of neural networks, U-Net and Deeplabv3+, to solve the same semantic segmentation task. We show that neural networks are able to learn from imperfect datasets, artificially generated by other algorithms. Deep convolutional architectures outperform the algorithm based on computer vision techniques. In order to find the best model, a comparison was made between the two architectures, thereby concluding that Deeplabv3+ achieves better results and features robust operation under adverse environmental conditions." @default.
- W3116425700 created "2021-01-05" @default.
- W3116425700 creator A5008767165 @default.
- W3116425700 creator A5022189101 @default.
- W3116425700 creator A5027382066 @default.
- W3116425700 creator A5065327460 @default.
- W3116425700 creator A5078650166 @default.
- W3116425700 date "2021-01-24" @default.
- W3116425700 modified "2023-09-23" @default.
- W3116425700 title "Convolutional Neural Networks for Underwater Pipeline Segmentation using Imperfect Datasets" @default.
- W3116425700 cites W1533097816 @default.
- W3116425700 cites W1745334888 @default.
- W3116425700 cites W1817277359 @default.
- W3116425700 cites W1901129140 @default.
- W3116425700 cites W1984260762 @default.
- W3116425700 cites W2010299265 @default.
- W3116425700 cites W2053577575 @default.
- W3116425700 cites W2059686984 @default.
- W3116425700 cites W2104095591 @default.
- W3116425700 cites W2104978738 @default.
- W3116425700 cites W2109255472 @default.
- W3116425700 cites W2118661197 @default.
- W3116425700 cites W2123808330 @default.
- W3116425700 cites W2194775991 @default.
- W3116425700 cites W2312198368 @default.
- W3116425700 cites W2460470859 @default.
- W3116425700 cites W2557406251 @default.
- W3116425700 cites W2560023338 @default.
- W3116425700 cites W2561585794 @default.
- W3116425700 cites W2563705555 @default.
- W3116425700 cites W2603089249 @default.
- W3116425700 cites W2630837129 @default.
- W3116425700 cites W2759246038 @default.
- W3116425700 cites W2781762404 @default.
- W3116425700 cites W2804860796 @default.
- W3116425700 cites W2883542984 @default.
- W3116425700 cites W2888016381 @default.
- W3116425700 cites W2891995018 @default.
- W3116425700 cites W2962825871 @default.
- W3116425700 cites W2963881378 @default.
- W3116425700 cites W2964309882 @default.
- W3116425700 cites W3014399291 @default.
- W3116425700 doi "https://doi.org/10.23919/eusipco47968.2020.9287605" @default.
- W3116425700 hasPublicationYear "2021" @default.
- W3116425700 type Work @default.
- W3116425700 sameAs 3116425700 @default.
- W3116425700 citedByCount "0" @default.
- W3116425700 crossrefType "proceedings-article" @default.
- W3116425700 hasAuthorship W3116425700A5008767165 @default.
- W3116425700 hasAuthorship W3116425700A5022189101 @default.
- W3116425700 hasAuthorship W3116425700A5027382066 @default.
- W3116425700 hasAuthorship W3116425700A5065327460 @default.
- W3116425700 hasAuthorship W3116425700A5078650166 @default.
- W3116425700 hasConcept C108583219 @default.
- W3116425700 hasConcept C111368507 @default.
- W3116425700 hasConcept C119857082 @default.
- W3116425700 hasConcept C124504099 @default.
- W3116425700 hasConcept C127313418 @default.
- W3116425700 hasConcept C138885662 @default.
- W3116425700 hasConcept C153180895 @default.
- W3116425700 hasConcept C154945302 @default.
- W3116425700 hasConcept C162324750 @default.
- W3116425700 hasConcept C187736073 @default.
- W3116425700 hasConcept C199360897 @default.
- W3116425700 hasConcept C2780310539 @default.
- W3116425700 hasConcept C2780451532 @default.
- W3116425700 hasConcept C41008148 @default.
- W3116425700 hasConcept C41895202 @default.
- W3116425700 hasConcept C43521106 @default.
- W3116425700 hasConcept C50644808 @default.
- W3116425700 hasConcept C81363708 @default.
- W3116425700 hasConcept C89600930 @default.
- W3116425700 hasConcept C98083399 @default.
- W3116425700 hasConceptScore W3116425700C108583219 @default.
- W3116425700 hasConceptScore W3116425700C111368507 @default.
- W3116425700 hasConceptScore W3116425700C119857082 @default.
- W3116425700 hasConceptScore W3116425700C124504099 @default.
- W3116425700 hasConceptScore W3116425700C127313418 @default.
- W3116425700 hasConceptScore W3116425700C138885662 @default.
- W3116425700 hasConceptScore W3116425700C153180895 @default.
- W3116425700 hasConceptScore W3116425700C154945302 @default.
- W3116425700 hasConceptScore W3116425700C162324750 @default.
- W3116425700 hasConceptScore W3116425700C187736073 @default.
- W3116425700 hasConceptScore W3116425700C199360897 @default.
- W3116425700 hasConceptScore W3116425700C2780310539 @default.
- W3116425700 hasConceptScore W3116425700C2780451532 @default.
- W3116425700 hasConceptScore W3116425700C41008148 @default.
- W3116425700 hasConceptScore W3116425700C41895202 @default.
- W3116425700 hasConceptScore W3116425700C43521106 @default.
- W3116425700 hasConceptScore W3116425700C50644808 @default.
- W3116425700 hasConceptScore W3116425700C81363708 @default.
- W3116425700 hasConceptScore W3116425700C89600930 @default.
- W3116425700 hasConceptScore W3116425700C98083399 @default.
- W3116425700 hasLocation W31164257001 @default.
- W3116425700 hasOpenAccess W3116425700 @default.
- W3116425700 hasPrimaryLocation W31164257001 @default.
- W3116425700 hasRelatedWork W2738221750 @default.
- W3116425700 hasRelatedWork W2790662084 @default.
- W3116425700 hasRelatedWork W2948658236 @default.
- W3116425700 hasRelatedWork W3102253946 @default.