Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116571893> ?p ?o ?g. }
- W3116571893 abstract "Federated learning (FL) is a new paradigm for large-scale learning tasks across mobile devices. However, practical FL deployment over resource constrained mobile devices confronts multiple challenges. For example, it is not clear how to establish an effective wireless network architecture to support FL over mobile devices. Besides, as modern machine learning models are more and more complex, the local on-device training/intermediate model update in FL is becoming too power hungry/radio resource intensive for mobile devices to afford. To address those challenges, in this paper, we try to bridge another recent surging technology, 5G, with FL, and develop a wireless transmission and weight quantization co-design for energy efficient FL over heterogeneous 5G mobile devices. Briefly, the 5G featured high data rate helps to relieve the severe communication concern, and the multi-access edge computing (MEC) in 5G provides a perfect network architecture to support FL. Under MEC architecture, we develop flexible weight quantization schemes to facilitate the on-device local training over heterogeneous 5G mobile devices. Observed the fact that the energy consumption of local computing is comparable to that of the model updates via 5G transmissions, we formulate the energy efficient FL problem into a mixed-integer programming problem to elaborately determine the quantization strategies and allocate the wireless bandwidth for heterogeneous 5G mobile devices. The goal is to minimize the overall FL energy consumption (computing + 5G transmissions) over 5G mobile devices while guaranteeing learning performance and training latency. Generalized Benders' Decomposition is applied to develop feasible solutions and extensive simulations are conducted to verify the effectiveness of the proposed scheme." @default.
- W3116571893 created "2021-01-05" @default.
- W3116571893 creator A5027237940 @default.
- W3116571893 creator A5027958656 @default.
- W3116571893 creator A5043192495 @default.
- W3116571893 creator A5047722991 @default.
- W3116571893 creator A5053453125 @default.
- W3116571893 creator A5064564309 @default.
- W3116571893 date "2020-12-21" @default.
- W3116571893 modified "2023-09-25" @default.
- W3116571893 title "To Talk or to Work: Energy Efficient Federated Learning over Mobile Devices via the Weight Quantization and 5G Transmission Co-Design." @default.
- W3116571893 cites W1632601927 @default.
- W3116571893 cites W1841592590 @default.
- W3116571893 cites W2061962896 @default.
- W3116571893 cites W2319920447 @default.
- W3116571893 cites W2626129225 @default.
- W3116571893 cites W2752512710 @default.
- W3116571893 cites W2760837370 @default.
- W3116571893 cites W2783522756 @default.
- W3116571893 cites W2791110811 @default.
- W3116571893 cites W2798544842 @default.
- W3116571893 cites W2884150179 @default.
- W3116571893 cites W2896753463 @default.
- W3116571893 cites W2900120080 @default.
- W3116571893 cites W2900182564 @default.
- W3116571893 cites W2907494684 @default.
- W3116571893 cites W2920095265 @default.
- W3116571893 cites W2923673691 @default.
- W3116571893 cites W2963029056 @default.
- W3116571893 cites W2963318081 @default.
- W3116571893 cites W2963363373 @default.
- W3116571893 cites W2964299589 @default.
- W3116571893 cites W2974393504 @default.
- W3116571893 cites W2995653155 @default.
- W3116571893 cites W2998690112 @default.
- W3116571893 cites W2999074226 @default.
- W3116571893 cites W3027859434 @default.
- W3116571893 cites W3034608272 @default.
- W3116571893 cites W3036275239 @default.
- W3116571893 cites W3089655738 @default.
- W3116571893 cites W3105122387 @default.
- W3116571893 cites W3109847748 @default.
- W3116571893 cites W3152952112 @default.
- W3116571893 hasPublicationYear "2020" @default.
- W3116571893 type Work @default.
- W3116571893 sameAs 3116571893 @default.
- W3116571893 citedByCount "0" @default.
- W3116571893 crossrefType "posted-content" @default.
- W3116571893 hasAuthorship W3116571893A5027237940 @default.
- W3116571893 hasAuthorship W3116571893A5027958656 @default.
- W3116571893 hasAuthorship W3116571893A5043192495 @default.
- W3116571893 hasAuthorship W3116571893A5047722991 @default.
- W3116571893 hasAuthorship W3116571893A5053453125 @default.
- W3116571893 hasAuthorship W3116571893A5064564309 @default.
- W3116571893 hasConcept C105339364 @default.
- W3116571893 hasConcept C111919701 @default.
- W3116571893 hasConcept C119599485 @default.
- W3116571893 hasConcept C120314980 @default.
- W3116571893 hasConcept C127413603 @default.
- W3116571893 hasConcept C186967261 @default.
- W3116571893 hasConcept C2742236 @default.
- W3116571893 hasConcept C2776061582 @default.
- W3116571893 hasConcept C2780165032 @default.
- W3116571893 hasConcept C28855332 @default.
- W3116571893 hasConcept C31258907 @default.
- W3116571893 hasConcept C31972630 @default.
- W3116571893 hasConcept C41008148 @default.
- W3116571893 hasConcept C555944384 @default.
- W3116571893 hasConcept C76155785 @default.
- W3116571893 hasConcept C78834623 @default.
- W3116571893 hasConcept C93996380 @default.
- W3116571893 hasConceptScore W3116571893C105339364 @default.
- W3116571893 hasConceptScore W3116571893C111919701 @default.
- W3116571893 hasConceptScore W3116571893C119599485 @default.
- W3116571893 hasConceptScore W3116571893C120314980 @default.
- W3116571893 hasConceptScore W3116571893C127413603 @default.
- W3116571893 hasConceptScore W3116571893C186967261 @default.
- W3116571893 hasConceptScore W3116571893C2742236 @default.
- W3116571893 hasConceptScore W3116571893C2776061582 @default.
- W3116571893 hasConceptScore W3116571893C2780165032 @default.
- W3116571893 hasConceptScore W3116571893C28855332 @default.
- W3116571893 hasConceptScore W3116571893C31258907 @default.
- W3116571893 hasConceptScore W3116571893C31972630 @default.
- W3116571893 hasConceptScore W3116571893C41008148 @default.
- W3116571893 hasConceptScore W3116571893C555944384 @default.
- W3116571893 hasConceptScore W3116571893C76155785 @default.
- W3116571893 hasConceptScore W3116571893C78834623 @default.
- W3116571893 hasConceptScore W3116571893C93996380 @default.
- W3116571893 hasLocation W31165718931 @default.
- W3116571893 hasOpenAccess W3116571893 @default.
- W3116571893 hasPrimaryLocation W31165718931 @default.
- W3116571893 hasRelatedWork W1968578081 @default.
- W3116571893 hasRelatedWork W1981576805 @default.
- W3116571893 hasRelatedWork W2762866681 @default.
- W3116571893 hasRelatedWork W2793578783 @default.
- W3116571893 hasRelatedWork W2794780552 @default.
- W3116571893 hasRelatedWork W2796534632 @default.
- W3116571893 hasRelatedWork W2955818538 @default.
- W3116571893 hasRelatedWork W2963186244 @default.
- W3116571893 hasRelatedWork W2973251255 @default.