Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116578275> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3116578275 endingPage "355" @default.
- W3116578275 startingPage "341" @default.
- W3116578275 abstract "Myocardial infarction is the leading cause of death worldwide. In this paper, we design domain-inspired neural network models to detect myocardial infarction. First, we study the contribution of various leads. This systematic analysis, first of its kind in the literature, indicates that out of 15 ECG leads, data from the v6, vz, and ii leads are critical to correctly identify myocardial infarction. Second, we use this finding and adapt the ConvNetQuake neural network model--originally designed to identify earthquakes--to attain state-of-the-art classification results for myocardial infarction, achieving $99.43%$ classification accuracy on a record-wise split, and $97.83%$ classification accuracy on a patient-wise split. These two results represent cardiologist-level performance level for myocardial infarction detection after feeding only 10 seconds of raw ECG data into our model. Third, we show that our multi-ECG-channel neural network achieves cardiologist-level performance without the need of any kind of manual feature extraction or data pre-processing." @default.
- W3116578275 created "2021-01-05" @default.
- W3116578275 creator A5002435451 @default.
- W3116578275 creator A5014238711 @default.
- W3116578275 creator A5048820768 @default.
- W3116578275 creator A5049074853 @default.
- W3116578275 date "2020-11-30" @default.
- W3116578275 modified "2023-09-30" @default.
- W3116578275 title "Deep Learning for Cardiologist-Level Myocardial Infarction Detection in Electrocardiograms" @default.
- W3116578275 cites W1757870343 @default.
- W3116578275 cites W1972003923 @default.
- W3116578275 cites W2022691337 @default.
- W3116578275 cites W2076063813 @default.
- W3116578275 cites W2077430201 @default.
- W3116578275 cites W2162800060 @default.
- W3116578275 cites W2475310753 @default.
- W3116578275 cites W2568927912 @default.
- W3116578275 cites W2702116941 @default.
- W3116578275 cites W2734657638 @default.
- W3116578275 cites W2762410434 @default.
- W3116578275 cites W2762957076 @default.
- W3116578275 cites W2767526854 @default.
- W3116578275 cites W2768455873 @default.
- W3116578275 cites W2770250658 @default.
- W3116578275 cites W2804191040 @default.
- W3116578275 cites W2883065952 @default.
- W3116578275 cites W2888010882 @default.
- W3116578275 cites W2891923130 @default.
- W3116578275 cites W2892035503 @default.
- W3116578275 cites W2899283552 @default.
- W3116578275 cites W2907489335 @default.
- W3116578275 cites W2907952156 @default.
- W3116578275 cites W2919115771 @default.
- W3116578275 cites W2923470404 @default.
- W3116578275 cites W2944352165 @default.
- W3116578275 cites W2947157626 @default.
- W3116578275 cites W2951545958 @default.
- W3116578275 cites W2977600537 @default.
- W3116578275 cites W2978988797 @default.
- W3116578275 cites W2981230744 @default.
- W3116578275 cites W3004517575 @default.
- W3116578275 cites W3100127953 @default.
- W3116578275 cites W3106455851 @default.
- W3116578275 cites W4236797923 @default.
- W3116578275 doi "https://doi.org/10.1007/978-3-030-64610-3_40" @default.
- W3116578275 hasPublicationYear "2020" @default.
- W3116578275 type Work @default.
- W3116578275 sameAs 3116578275 @default.
- W3116578275 citedByCount "9" @default.
- W3116578275 countsByYear W31165782752021 @default.
- W3116578275 countsByYear W31165782752022 @default.
- W3116578275 countsByYear W31165782752023 @default.
- W3116578275 crossrefType "book-chapter" @default.
- W3116578275 hasAuthorship W3116578275A5002435451 @default.
- W3116578275 hasAuthorship W3116578275A5014238711 @default.
- W3116578275 hasAuthorship W3116578275A5048820768 @default.
- W3116578275 hasAuthorship W3116578275A5049074853 @default.
- W3116578275 hasBestOaLocation W31165782752 @default.
- W3116578275 hasConcept C119857082 @default.
- W3116578275 hasConcept C126322002 @default.
- W3116578275 hasConcept C153180895 @default.
- W3116578275 hasConcept C154945302 @default.
- W3116578275 hasConcept C164705383 @default.
- W3116578275 hasConcept C41008148 @default.
- W3116578275 hasConcept C500558357 @default.
- W3116578275 hasConcept C50644808 @default.
- W3116578275 hasConcept C71924100 @default.
- W3116578275 hasConceptScore W3116578275C119857082 @default.
- W3116578275 hasConceptScore W3116578275C126322002 @default.
- W3116578275 hasConceptScore W3116578275C153180895 @default.
- W3116578275 hasConceptScore W3116578275C154945302 @default.
- W3116578275 hasConceptScore W3116578275C164705383 @default.
- W3116578275 hasConceptScore W3116578275C41008148 @default.
- W3116578275 hasConceptScore W3116578275C500558357 @default.
- W3116578275 hasConceptScore W3116578275C50644808 @default.
- W3116578275 hasConceptScore W3116578275C71924100 @default.
- W3116578275 hasLocation W31165782751 @default.
- W3116578275 hasLocation W31165782752 @default.
- W3116578275 hasLocation W31165782753 @default.
- W3116578275 hasOpenAccess W3116578275 @default.
- W3116578275 hasPrimaryLocation W31165782751 @default.
- W3116578275 hasRelatedWork W2119852139 @default.
- W3116578275 hasRelatedWork W2316107365 @default.
- W3116578275 hasRelatedWork W2367140913 @default.
- W3116578275 hasRelatedWork W2377483921 @default.
- W3116578275 hasRelatedWork W2384102316 @default.
- W3116578275 hasRelatedWork W2411183214 @default.
- W3116578275 hasRelatedWork W2443697580 @default.
- W3116578275 hasRelatedWork W2595649087 @default.
- W3116578275 hasRelatedWork W2748952813 @default.
- W3116578275 hasRelatedWork W2899084033 @default.
- W3116578275 isParatext "false" @default.
- W3116578275 isRetracted "false" @default.
- W3116578275 magId "3116578275" @default.
- W3116578275 workType "book-chapter" @default.