Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116724564> ?p ?o ?g. }
- W3116724564 endingPage "A1144" @default.
- W3116724564 startingPage "A1116" @default.
- W3116724564 abstract "Multiway data often naturally occurs in a tensorial format which can be approximately represented by a low-rank tensor decomposition. This is useful because complexity can be significantly reduced and the treatment of large-scale data sets can be facilitated. In this paper, we find a low-rank representation for a given tensor by solving a Bayesian inference problem. This is achieved by dividing the overall inference problem into subproblems where we sequentially infer the posterior distribution of one tensor decomposition component at a time. This leads to a probabilistic interpretation of the well-known iterative algorithm alternating linear scheme (ALS). In this way, the consideration of measurement noise is enabled, as well as the incorporation of application-specific prior knowledge and the uncertainty quantification of the low-rank tensor estimate. To compute the low-rank tensor estimate from the posterior distributions of the tensor decomposition components, we present an algorithm that performs the unscented transform in tensor train format." @default.
- W3116724564 created "2021-01-05" @default.
- W3116724564 creator A5017416513 @default.
- W3116724564 creator A5056193711 @default.
- W3116724564 creator A5069278165 @default.
- W3116724564 date "2022-05-05" @default.
- W3116724564 modified "2023-09-26" @default.
- W3116724564 title "Alternating Linear Scheme in a Bayesian Framework for Low-Rank Tensor Approximation" @default.
- W3116724564 cites W115063971 @default.
- W3116724564 cites W1949511783 @default.
- W3116724564 cites W1963826206 @default.
- W3116724564 cites W1968119930 @default.
- W3116724564 cites W1988001416 @default.
- W3116724564 cites W1993482030 @default.
- W3116724564 cites W1996869553 @default.
- W3116724564 cites W2000215628 @default.
- W3116724564 cites W2024165284 @default.
- W3116724564 cites W2025267249 @default.
- W3116724564 cites W2025603201 @default.
- W3116724564 cites W2031216664 @default.
- W3116724564 cites W2035182720 @default.
- W3116724564 cites W2040006565 @default.
- W3116724564 cites W2062692432 @default.
- W3116724564 cites W2088522763 @default.
- W3116724564 cites W2123487311 @default.
- W3116724564 cites W2147512299 @default.
- W3116724564 cites W2160791191 @default.
- W3116724564 cites W2469230926 @default.
- W3116724564 cites W2515303911 @default.
- W3116724564 cites W2516041031 @default.
- W3116724564 cites W2617994470 @default.
- W3116724564 cites W2962912370 @default.
- W3116724564 cites W2963472624 @default.
- W3116724564 cites W2963737062 @default.
- W3116724564 cites W3013770732 @default.
- W3116724564 cites W3103713775 @default.
- W3116724564 cites W792141054 @default.
- W3116724564 doi "https://doi.org/10.1137/20m1386414" @default.
- W3116724564 hasPublicationYear "2022" @default.
- W3116724564 type Work @default.
- W3116724564 sameAs 3116724564 @default.
- W3116724564 citedByCount "1" @default.
- W3116724564 countsByYear W31167245642022 @default.
- W3116724564 crossrefType "journal-article" @default.
- W3116724564 hasAuthorship W3116724564A5017416513 @default.
- W3116724564 hasAuthorship W3116724564A5056193711 @default.
- W3116724564 hasAuthorship W3116724564A5069278165 @default.
- W3116724564 hasBestOaLocation W31167245642 @default.
- W3116724564 hasConcept C105795698 @default.
- W3116724564 hasConcept C107673813 @default.
- W3116724564 hasConcept C11413529 @default.
- W3116724564 hasConcept C114614502 @default.
- W3116724564 hasConcept C126255220 @default.
- W3116724564 hasConcept C154945302 @default.
- W3116724564 hasConcept C155281189 @default.
- W3116724564 hasConcept C160234255 @default.
- W3116724564 hasConcept C164226766 @default.
- W3116724564 hasConcept C17744445 @default.
- W3116724564 hasConcept C199539241 @default.
- W3116724564 hasConcept C2524010 @default.
- W3116724564 hasConcept C2776214188 @default.
- W3116724564 hasConcept C2776359362 @default.
- W3116724564 hasConcept C28826006 @default.
- W3116724564 hasConcept C33923547 @default.
- W3116724564 hasConcept C41008148 @default.
- W3116724564 hasConcept C94625758 @default.
- W3116724564 hasConceptScore W3116724564C105795698 @default.
- W3116724564 hasConceptScore W3116724564C107673813 @default.
- W3116724564 hasConceptScore W3116724564C11413529 @default.
- W3116724564 hasConceptScore W3116724564C114614502 @default.
- W3116724564 hasConceptScore W3116724564C126255220 @default.
- W3116724564 hasConceptScore W3116724564C154945302 @default.
- W3116724564 hasConceptScore W3116724564C155281189 @default.
- W3116724564 hasConceptScore W3116724564C160234255 @default.
- W3116724564 hasConceptScore W3116724564C164226766 @default.
- W3116724564 hasConceptScore W3116724564C17744445 @default.
- W3116724564 hasConceptScore W3116724564C199539241 @default.
- W3116724564 hasConceptScore W3116724564C2524010 @default.
- W3116724564 hasConceptScore W3116724564C2776214188 @default.
- W3116724564 hasConceptScore W3116724564C2776359362 @default.
- W3116724564 hasConceptScore W3116724564C28826006 @default.
- W3116724564 hasConceptScore W3116724564C33923547 @default.
- W3116724564 hasConceptScore W3116724564C41008148 @default.
- W3116724564 hasConceptScore W3116724564C94625758 @default.
- W3116724564 hasIssue "3" @default.
- W3116724564 hasLocation W31167245641 @default.
- W3116724564 hasLocation W31167245642 @default.
- W3116724564 hasLocation W31167245643 @default.
- W3116724564 hasOpenAccess W3116724564 @default.
- W3116724564 hasPrimaryLocation W31167245641 @default.
- W3116724564 hasRelatedWork W2055200551 @default.
- W3116724564 hasRelatedWork W2753218748 @default.
- W3116724564 hasRelatedWork W2774409638 @default.
- W3116724564 hasRelatedWork W2789413038 @default.
- W3116724564 hasRelatedWork W2889562828 @default.
- W3116724564 hasRelatedWork W2952635455 @default.
- W3116724564 hasRelatedWork W2953280030 @default.
- W3116724564 hasRelatedWork W3002319139 @default.