Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116789974> ?p ?o ?g. }
- W3116789974 endingPage "100828" @default.
- W3116789974 startingPage "100828" @default.
- W3116789974 abstract "The non-revisiting genetic algorithm (NrGA) uses the entire search history with parameter-less adaptive mutation to significantly enhance search performance. In the past decade, a family of non-revisiting stochastic search (NrSS) methods has been developed. Using the entire (or partial) search history to assist evolutionary computation can achieve not only the goal of duplicated solution prevention, but also other utilizations such as adaptive parameter-less local search and fitness landscape estimation. In this survey, the focus is on the memory-assisted stochastic search techniques that store the search history in a binary space partitioning (BSP) tree. First, the basic NrGA is reviewed. Then, the development of the family of NrSS is reviewed from three aspects: 1) the basic NrSS algorithms, 2) conceptual extension of non-revisit and usage of the search history as novel operators and estimators, and 3) application of NrSS to different problem types, such as multi-objective problems, dynamic problems, and multi-modal problems. A comprehensive classification of search history-assisted algorithms suggests that the cumulative historical search information can be developed in a more functional manner; for example, a BSP tree can be simultaneously used for revisit prevention, fitness landscape estimation, and adaptive operation. Both the application on real-world problems and the theoretical analysis of NrSS are reviewed. Possible future work suggestions include a deeper understanding of the non-revisiting scheme in theory, a more comprehensive functional usage of search history, and a closer cooperation with data-driven techniques." @default.
- W3116789974 created "2021-01-05" @default.
- W3116789974 creator A5024633466 @default.
- W3116789974 creator A5074413224 @default.
- W3116789974 creator A5091162383 @default.
- W3116789974 date "2021-03-01" @default.
- W3116789974 modified "2023-10-02" @default.
- W3116789974 title "Non-revisiting stochastic search revisited: Results, perspectives, and future directions" @default.
- W3116789974 cites W1063195992 @default.
- W3116789974 cites W1522440472 @default.
- W3116789974 cites W1530490667 @default.
- W3116789974 cites W1595159159 @default.
- W3116789974 cites W179940750 @default.
- W3116789974 cites W1964347690 @default.
- W3116789974 cites W1965266627 @default.
- W3116789974 cites W1971775037 @default.
- W3116789974 cites W1972978214 @default.
- W3116789974 cites W1974609199 @default.
- W3116789974 cites W1974828111 @default.
- W3116789974 cites W1975314712 @default.
- W3116789974 cites W1985485311 @default.
- W3116789974 cites W1985878151 @default.
- W3116789974 cites W1988284705 @default.
- W3116789974 cites W1994300967 @default.
- W3116789974 cites W1994690018 @default.
- W3116789974 cites W1995972800 @default.
- W3116789974 cites W2000089808 @default.
- W3116789974 cites W2001422417 @default.
- W3116789974 cites W2008434012 @default.
- W3116789974 cites W2011174137 @default.
- W3116789974 cites W2021340813 @default.
- W3116789974 cites W2024746652 @default.
- W3116789974 cites W2032883187 @default.
- W3116789974 cites W2041282815 @default.
- W3116789974 cites W2047094503 @default.
- W3116789974 cites W2054458776 @default.
- W3116789974 cites W2055651342 @default.
- W3116789974 cites W2058657545 @default.
- W3116789974 cites W2061438946 @default.
- W3116789974 cites W2071853901 @default.
- W3116789974 cites W2072955302 @default.
- W3116789974 cites W2078702416 @default.
- W3116789974 cites W2084792706 @default.
- W3116789974 cites W2085054178 @default.
- W3116789974 cites W2113349008 @default.
- W3116789974 cites W2114652055 @default.
- W3116789974 cites W2116363350 @default.
- W3116789974 cites W2120138297 @default.
- W3116789974 cites W2126105956 @default.
- W3116789974 cites W2132340807 @default.
- W3116789974 cites W2132366653 @default.
- W3116789974 cites W2134946882 @default.
- W3116789974 cites W2135674775 @default.
- W3116789974 cites W2143381319 @default.
- W3116789974 cites W2143503407 @default.
- W3116789974 cites W2143560894 @default.
- W3116789974 cites W2148653444 @default.
- W3116789974 cites W2151554678 @default.
- W3116789974 cites W2151939106 @default.
- W3116789974 cites W2155529731 @default.
- W3116789974 cites W2156063987 @default.
- W3116789974 cites W2160635375 @default.
- W3116789974 cites W2169245194 @default.
- W3116789974 cites W2226991558 @default.
- W3116789974 cites W2291213903 @default.
- W3116789974 cites W2337480916 @default.
- W3116789974 cites W2526320124 @default.
- W3116789974 cites W2567420278 @default.
- W3116789974 cites W2585392941 @default.
- W3116789974 cites W2606234828 @default.
- W3116789974 cites W2606879267 @default.
- W3116789974 cites W2732359978 @default.
- W3116789974 cites W2741252017 @default.
- W3116789974 cites W2765725292 @default.
- W3116789974 cites W2766114129 @default.
- W3116789974 cites W2801693842 @default.
- W3116789974 cites W2809587280 @default.
- W3116789974 cites W2811349597 @default.
- W3116789974 cites W2891186800 @default.
- W3116789974 cites W2903055092 @default.
- W3116789974 cites W2921421327 @default.
- W3116789974 cites W2979909004 @default.
- W3116789974 cites W2983867871 @default.
- W3116789974 cites W2984615832 @default.
- W3116789974 cites W3012266327 @default.
- W3116789974 cites W3041890659 @default.
- W3116789974 cites W4253534482 @default.
- W3116789974 cites W883434633 @default.
- W3116789974 doi "https://doi.org/10.1016/j.swevo.2020.100828" @default.
- W3116789974 hasPublicationYear "2021" @default.
- W3116789974 type Work @default.
- W3116789974 sameAs 3116789974 @default.
- W3116789974 citedByCount "10" @default.
- W3116789974 countsByYear W31167899742021 @default.
- W3116789974 countsByYear W31167899742022 @default.
- W3116789974 countsByYear W31167899742023 @default.
- W3116789974 crossrefType "journal-article" @default.
- W3116789974 hasAuthorship W3116789974A5024633466 @default.