Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116833151> ?p ?o ?g. }
- W3116833151 endingPage "100085" @default.
- W3116833151 startingPage "100085" @default.
- W3116833151 abstract "There is a growing interest to improve feed efficiency (FE) traits in cattle. The genomic selection was proposed to improve these traits since they are difficult and expensive to measure. Up to date, there are scarce studies about the implementation of genomic selection for FE traits in indicine cattle under different scenarios of pseudo-phenotypes, models, and validation strategies on a commercial large scale. Thus, the aim was to evaluate the feasibility of genomic selection implementation for FE traits in Nelore cattle applying different models and pseudo-phenotypes under validation strategies. Phenotypic and genotypic information from 4 329 and 3 467 animals were used, respectively, which were tested for residual feed intake, DM intake, feed efficiency, feed conversion ratio, residual BW gain, and residual intake and BW gain. Six prediction methods were used: single-step genomic best linear unbiased prediction, Bayes A, Bayes B, Bayes Cπ, Bayesian least absolute shrinkage and selection operator (BLASSO), and Bayes R. Phenotypes adjusted for fixed effects (Y*), estimated breeding value (EBV), and EBV deregressed (DEBV) were used as pseudo-phenotypes. The validation approaches used were: (1) random: the data was randomly divided into ten subsets and the validation was done in each subset at a time; (2) age: the partition into training and testing sets was based on year of birth and testing animals were born after 2016; and (3) EBV accuracy: the data was split into two groups, being animals with accuracy above 0.45 the training set; and below 0.45 the validation set. In the analyses that used the Y* as pseudo-phenotype, prediction ability (PA) was obtained by dividing the correlation between pseudo-phenotype and genomic EBV (GEBV) by the square root of the heritability of the trait. When EBV and DEBV were used as the pseudo-phenotype, the simple correlation of this quantity with the GEBV was considered as PA. The prediction methods show similar results for PA and bias. The random cross-validation presented higher PA (0.17) than EBV accuracy (0.14) and age (0.13). The PA was higher for Y* than for EBV and DEBV (30.0 and 34.3%, respectively). Random validation presented the highest PA, being indicated for use in populations composed mainly of young animals and traits with few generations of data recording. For high heritability traits, the validation can be done by age, enabling the prediction of the next-generation genetic merit. These results would support breeders to identify genomic approaches that are more viable for genomic prediction for FE-related traits." @default.
- W3116833151 created "2021-01-05" @default.
- W3116833151 creator A5005719046 @default.
- W3116833151 creator A5056881743 @default.
- W3116833151 creator A5065361726 @default.
- W3116833151 creator A5065963623 @default.
- W3116833151 creator A5071577245 @default.
- W3116833151 creator A5076870658 @default.
- W3116833151 creator A5088962658 @default.
- W3116833151 creator A5090063645 @default.
- W3116833151 date "2021-02-01" @default.
- W3116833151 modified "2023-10-18" @default.
- W3116833151 title "Genomic prediction ability for feed efficiency traits using different models and pseudo-phenotypes under several validation strategies in Nelore cattle" @default.
- W3116833151 cites W1928998639 @default.
- W3116833151 cites W1964595184 @default.
- W3116833151 cites W1970459140 @default.
- W3116833151 cites W1974128519 @default.
- W3116833151 cites W1977070310 @default.
- W3116833151 cites W1978808994 @default.
- W3116833151 cites W1982652137 @default.
- W3116833151 cites W1993900566 @default.
- W3116833151 cites W2002841479 @default.
- W3116833151 cites W2011753368 @default.
- W3116833151 cites W2034846276 @default.
- W3116833151 cites W2041000916 @default.
- W3116833151 cites W2042425138 @default.
- W3116833151 cites W2056924421 @default.
- W3116833151 cites W2065134850 @default.
- W3116833151 cites W2067715889 @default.
- W3116833151 cites W2106418989 @default.
- W3116833151 cites W2110787179 @default.
- W3116833151 cites W2110974472 @default.
- W3116833151 cites W2114044285 @default.
- W3116833151 cites W2125953639 @default.
- W3116833151 cites W2128343509 @default.
- W3116833151 cites W2141255466 @default.
- W3116833151 cites W2149385055 @default.
- W3116833151 cites W2152083226 @default.
- W3116833151 cites W2162851056 @default.
- W3116833151 cites W2168329225 @default.
- W3116833151 cites W2171214867 @default.
- W3116833151 cites W2172258339 @default.
- W3116833151 cites W2238355159 @default.
- W3116833151 cites W2276064663 @default.
- W3116833151 cites W2508879308 @default.
- W3116833151 cites W2511852445 @default.
- W3116833151 cites W2537063883 @default.
- W3116833151 cites W2559983618 @default.
- W3116833151 cites W2575597151 @default.
- W3116833151 cites W2615434453 @default.
- W3116833151 cites W2760790468 @default.
- W3116833151 cites W2809374607 @default.
- W3116833151 cites W2893960359 @default.
- W3116833151 cites W2973065284 @default.
- W3116833151 cites W71047797 @default.
- W3116833151 cites W806418344 @default.
- W3116833151 doi "https://doi.org/10.1016/j.animal.2020.100085" @default.
- W3116833151 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33573965" @default.
- W3116833151 hasPublicationYear "2021" @default.
- W3116833151 type Work @default.
- W3116833151 sameAs 3116833151 @default.
- W3116833151 citedByCount "10" @default.
- W3116833151 countsByYear W31168331512021 @default.
- W3116833151 countsByYear W31168331512022 @default.
- W3116833151 countsByYear W31168331512023 @default.
- W3116833151 crossrefType "journal-article" @default.
- W3116833151 hasAuthorship W3116833151A5005719046 @default.
- W3116833151 hasAuthorship W3116833151A5056881743 @default.
- W3116833151 hasAuthorship W3116833151A5065361726 @default.
- W3116833151 hasAuthorship W3116833151A5065963623 @default.
- W3116833151 hasAuthorship W3116833151A5071577245 @default.
- W3116833151 hasAuthorship W3116833151A5076870658 @default.
- W3116833151 hasAuthorship W3116833151A5088962658 @default.
- W3116833151 hasAuthorship W3116833151A5090063645 @default.
- W3116833151 hasBestOaLocation W31168331511 @default.
- W3116833151 hasConcept C103545067 @default.
- W3116833151 hasConcept C104317684 @default.
- W3116833151 hasConcept C105795698 @default.
- W3116833151 hasConcept C107673813 @default.
- W3116833151 hasConcept C11413529 @default.
- W3116833151 hasConcept C119857082 @default.
- W3116833151 hasConcept C134018914 @default.
- W3116833151 hasConcept C135763542 @default.
- W3116833151 hasConcept C142291917 @default.
- W3116833151 hasConcept C147583825 @default.
- W3116833151 hasConcept C150903083 @default.
- W3116833151 hasConcept C153209595 @default.
- W3116833151 hasConcept C155512373 @default.
- W3116833151 hasConcept C207201462 @default.
- W3116833151 hasConcept C22830521 @default.
- W3116833151 hasConcept C2780505807 @default.
- W3116833151 hasConcept C2780527838 @default.
- W3116833151 hasConcept C2992444039 @default.
- W3116833151 hasConcept C33923547 @default.
- W3116833151 hasConcept C41008148 @default.
- W3116833151 hasConcept C54355233 @default.
- W3116833151 hasConcept C81917197 @default.
- W3116833151 hasConcept C86803240 @default.