Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117014290> ?p ?o ?g. }
- W3117014290 abstract "Many interesting datasets ubiquitous in machine learning and deep learning can be described via graphs. As the scale and complexity of graph-structured datasets increase, such as in expansive social networks, protein folding, chemical interaction networks, and material phase transitions, improving the efficiency of the machine learning techniques applied to these is crucial. In this study, we focus on Graph Neural Networks (GNN) that have found great success in tasks such as node or edge classification and link prediction. However, standard GNN models have scaling limits due to necessary recursive calculations performed through dense graph relationships that lead to memory and runtime bottlenecks. While new approaches for processing larger networks are needed to advance graph techniques, and several have been proposed, we study how GNNs could be parallelized using existing tools and frameworks that are known to be successful in the deep learning community. In particular, we investigate applying pipeline parallelism to GNN models with GPipe, introduced by Google in 2018." @default.
- W3117014290 created "2021-01-05" @default.
- W3117014290 creator A5039832836 @default.
- W3117014290 creator A5083932313 @default.
- W3117014290 date "2020-12-20" @default.
- W3117014290 modified "2023-09-27" @default.
- W3117014290 title "Analyzing the Performance of Graph Neural Networks with Pipe Parallelism." @default.
- W3117014290 cites W1662382123 @default.
- W3117014290 cites W2027731328 @default.
- W3117014290 cites W2128865241 @default.
- W3117014290 cites W2153959628 @default.
- W3117014290 cites W2169528473 @default.
- W3117014290 cites W2244807774 @default.
- W3117014290 cites W2519887557 @default.
- W3117014290 cites W2624431344 @default.
- W3117014290 cites W2766453196 @default.
- W3117014290 cites W2768308213 @default.
- W3117014290 cites W2905224888 @default.
- W3117014290 cites W2918342466 @default.
- W3117014290 cites W2951136539 @default.
- W3117014290 cites W2961295589 @default.
- W3117014290 cites W2962767366 @default.
- W3117014290 cites W2963312446 @default.
- W3117014290 cites W2964113829 @default.
- W3117014290 cites W2964321699 @default.
- W3117014290 cites W2985100785 @default.
- W3117014290 cites W2991040477 @default.
- W3117014290 cites W3011482926 @default.
- W3117014290 cites W3014178136 @default.
- W3117014290 cites W3019011053 @default.
- W3117014290 cites W3020605687 @default.
- W3117014290 cites W3034190530 @default.
- W3117014290 cites W3044167416 @default.
- W3117014290 cites W3080555959 @default.
- W3117014290 cites W3084983693 @default.
- W3117014290 cites W3088578860 @default.
- W3117014290 cites W3091862797 @default.
- W3117014290 cites W3100848837 @default.
- W3117014290 cites W3101413764 @default.
- W3117014290 cites W3103720336 @default.
- W3117014290 cites W637153065 @default.
- W3117014290 cites W3021975806 @default.
- W3117014290 hasPublicationYear "2020" @default.
- W3117014290 type Work @default.
- W3117014290 sameAs 3117014290 @default.
- W3117014290 citedByCount "0" @default.
- W3117014290 crossrefType "posted-content" @default.
- W3117014290 hasAuthorship W3117014290A5039832836 @default.
- W3117014290 hasAuthorship W3117014290A5083932313 @default.
- W3117014290 hasConcept C108583219 @default.
- W3117014290 hasConcept C119857082 @default.
- W3117014290 hasConcept C132525143 @default.
- W3117014290 hasConcept C154945302 @default.
- W3117014290 hasConcept C159985019 @default.
- W3117014290 hasConcept C173608175 @default.
- W3117014290 hasConcept C192562407 @default.
- W3117014290 hasConcept C199360897 @default.
- W3117014290 hasConcept C2524010 @default.
- W3117014290 hasConcept C2780502288 @default.
- W3117014290 hasConcept C2781172179 @default.
- W3117014290 hasConcept C30407753 @default.
- W3117014290 hasConcept C33923547 @default.
- W3117014290 hasConcept C41008148 @default.
- W3117014290 hasConcept C43521106 @default.
- W3117014290 hasConcept C80444323 @default.
- W3117014290 hasConcept C99844830 @default.
- W3117014290 hasConceptScore W3117014290C108583219 @default.
- W3117014290 hasConceptScore W3117014290C119857082 @default.
- W3117014290 hasConceptScore W3117014290C132525143 @default.
- W3117014290 hasConceptScore W3117014290C154945302 @default.
- W3117014290 hasConceptScore W3117014290C159985019 @default.
- W3117014290 hasConceptScore W3117014290C173608175 @default.
- W3117014290 hasConceptScore W3117014290C192562407 @default.
- W3117014290 hasConceptScore W3117014290C199360897 @default.
- W3117014290 hasConceptScore W3117014290C2524010 @default.
- W3117014290 hasConceptScore W3117014290C2780502288 @default.
- W3117014290 hasConceptScore W3117014290C2781172179 @default.
- W3117014290 hasConceptScore W3117014290C30407753 @default.
- W3117014290 hasConceptScore W3117014290C33923547 @default.
- W3117014290 hasConceptScore W3117014290C41008148 @default.
- W3117014290 hasConceptScore W3117014290C43521106 @default.
- W3117014290 hasConceptScore W3117014290C80444323 @default.
- W3117014290 hasConceptScore W3117014290C99844830 @default.
- W3117014290 hasLocation W31170142901 @default.
- W3117014290 hasOpenAccess W3117014290 @default.
- W3117014290 hasPrimaryLocation W31170142901 @default.
- W3117014290 hasRelatedWork W2738229808 @default.
- W3117014290 hasRelatedWork W2758676718 @default.
- W3117014290 hasRelatedWork W2780814699 @default.
- W3117014290 hasRelatedWork W2788193959 @default.
- W3117014290 hasRelatedWork W3019494121 @default.
- W3117014290 hasRelatedWork W3034671865 @default.
- W3117014290 hasRelatedWork W3045150092 @default.
- W3117014290 hasRelatedWork W3046100044 @default.
- W3117014290 hasRelatedWork W3082448434 @default.
- W3117014290 hasRelatedWork W3083840563 @default.
- W3117014290 hasRelatedWork W3093499132 @default.
- W3117014290 hasRelatedWork W3104580770 @default.
- W3117014290 hasRelatedWork W3131262006 @default.
- W3117014290 hasRelatedWork W3155247222 @default.