Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117097964> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3117097964 endingPage "20" @default.
- W3117097964 startingPage "13" @default.
- W3117097964 abstract "Machine learning is a domain within artificial intelligence that allows for computer algorithms to be learned from experience without them having being programmed. The objective of this study is to summarize the neurosurgical applications of machine learning when compared to clinical expertise. This study uses a systematic search to review articles from the PubMed and Embase databases in comparing various machine learning studies approaches to that of the clinical experts. For this study, 23 studies were identified which used machine learning algorithms for the diagnosis, pre-surgical planning, and outcome prediction. In conclusion, this study identifies that machine learning models can augment decision-making capacity for the surgeons and clinicians in neurosurgical applications. Despite this, there still exist hurdles that involve creation, validation, and the deployment of the machine learning techniques in clinical settings." @default.
- W3117097964 created "2021-01-05" @default.
- W3117097964 creator A5044714090 @default.
- W3117097964 date "2020-12-23" @default.
- W3117097964 modified "2023-09-25" @default.
- W3117097964 title "Impact of Machine Learning in Neurosurgery: A Systematic Review of Related Literature" @default.
- W3117097964 cites W136981859 @default.
- W3117097964 cites W1976570050 @default.
- W3117097964 cites W1983253910 @default.
- W3117097964 cites W2033870707 @default.
- W3117097964 cites W2037625543 @default.
- W3117097964 cites W2048481621 @default.
- W3117097964 cites W2060867475 @default.
- W3117097964 cites W2122343711 @default.
- W3117097964 cites W2169285019 @default.
- W3117097964 cites W2169818249 @default.
- W3117097964 cites W2177870565 @default.
- W3117097964 cites W2227085604 @default.
- W3117097964 cites W2299907252 @default.
- W3117097964 cites W2336829011 @default.
- W3117097964 cites W2460918282 @default.
- W3117097964 cites W3093874794 @default.
- W3117097964 doi "https://doi.org/10.18034/mjmbr.v8i1.520" @default.
- W3117097964 hasPublicationYear "2020" @default.
- W3117097964 type Work @default.
- W3117097964 sameAs 3117097964 @default.
- W3117097964 citedByCount "1" @default.
- W3117097964 countsByYear W31170979642021 @default.
- W3117097964 crossrefType "journal-article" @default.
- W3117097964 hasAuthorship W3117097964A5044714090 @default.
- W3117097964 hasBestOaLocation W31170979641 @default.
- W3117097964 hasConcept C105339364 @default.
- W3117097964 hasConcept C115903868 @default.
- W3117097964 hasConcept C119857082 @default.
- W3117097964 hasConcept C134306372 @default.
- W3117097964 hasConcept C154945302 @default.
- W3117097964 hasConcept C17744445 @default.
- W3117097964 hasConcept C189708586 @default.
- W3117097964 hasConcept C199539241 @default.
- W3117097964 hasConcept C2779473830 @default.
- W3117097964 hasConcept C33923547 @default.
- W3117097964 hasConcept C36503486 @default.
- W3117097964 hasConcept C41008148 @default.
- W3117097964 hasConceptScore W3117097964C105339364 @default.
- W3117097964 hasConceptScore W3117097964C115903868 @default.
- W3117097964 hasConceptScore W3117097964C119857082 @default.
- W3117097964 hasConceptScore W3117097964C134306372 @default.
- W3117097964 hasConceptScore W3117097964C154945302 @default.
- W3117097964 hasConceptScore W3117097964C17744445 @default.
- W3117097964 hasConceptScore W3117097964C189708586 @default.
- W3117097964 hasConceptScore W3117097964C199539241 @default.
- W3117097964 hasConceptScore W3117097964C2779473830 @default.
- W3117097964 hasConceptScore W3117097964C33923547 @default.
- W3117097964 hasConceptScore W3117097964C36503486 @default.
- W3117097964 hasConceptScore W3117097964C41008148 @default.
- W3117097964 hasIssue "1" @default.
- W3117097964 hasLocation W31170979641 @default.
- W3117097964 hasOpenAccess W3117097964 @default.
- W3117097964 hasPrimaryLocation W31170979641 @default.
- W3117097964 hasRelatedWork W2362198170 @default.
- W3117097964 hasRelatedWork W2961085424 @default.
- W3117097964 hasRelatedWork W3046775127 @default.
- W3117097964 hasRelatedWork W4200370911 @default.
- W3117097964 hasRelatedWork W4205958290 @default.
- W3117097964 hasRelatedWork W4286629047 @default.
- W3117097964 hasRelatedWork W4306321456 @default.
- W3117097964 hasRelatedWork W4306674287 @default.
- W3117097964 hasRelatedWork W4312263439 @default.
- W3117097964 hasRelatedWork W4224009465 @default.
- W3117097964 hasVolume "8" @default.
- W3117097964 isParatext "false" @default.
- W3117097964 isRetracted "false" @default.
- W3117097964 magId "3117097964" @default.
- W3117097964 workType "article" @default.