Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117112913> ?p ?o ?g. }
- W3117112913 endingPage "177801" @default.
- W3117112913 startingPage "177801" @default.
- W3117112913 abstract "An important feature of the irradiation process in nuclear system is the formation of large displacement cascades, in which primary knock-on atoms and secondary particles formed by nuclear reactions generate a considerable number of defects such as dislocations, vacancies and transmutation gases. Predicting and mitigating the adverse effects of damage defect and transmutation hydrogen/helium produced by high-dose neutron irradiation on the mechanical properties of structural materials is the most significant challenge facing the current development of nuclear energy. To solve this problem, understanding the interaction mechanism between hydrogen/helium atoms and micro-defects is a very important breakthrough. Precursors of helium/ hydrogen bubble, small helium/hydrogen-filled vacancy complexes, may play an important role in realizing bubble nucleation, and the formation of these complexes is affected by many factors. However, only a little information about helium/hydrogen-vacancy clusters’ behavior has been obtained in metal/alloy materials. This is mainly limited by the characterization methods, such as the limited resolution of transmission electron microscope (TEM). Helium/hydrogen-vacancy clusters cannot be observed by TEM before the formation of helium bubbles. Applications of positron annihilation to the study of crystal lattice defects started around 1970s, when it was realized that positron annihilation is particularly sensitive to vacancy-type defects and that annihilation properties manifest the nature of each specific type of defect. In recent years, with the continuous development of slow positron beam and the improvement of various experimental testing methods based on slow positron beam, the application of positron annihilation technology has been extended to the research field of hydrogen/helium behavior in metal materials, which plays an important role in studying the hydrogen/helium radiation damage to metal materials. In this review, the basic principles of positron annihilation spectroscopy are briefly discussed and the three most important measurement methods used for hydrogen/helium effect studies are described (i.e. positron annihilation lifetime spectroscopy (PALS), Doppler broadening spectroscopy (DBS), coincidence Doppler broadening spectroscopy (CDBS)). In this paper, the application of positron annihilation spectroscopy to the study of hydrogen/helium behavior in metal materials is reviewed in combination with the reported relevant developments (including our research group’s achieve-ments). The advantages of three commonly used measurement methods in the following specific studies are highlighted: 1) The estimation of bubble size and concentration; 2) irradiation damage induced by hydrogen/helium; 3) the evolution behavior of irradiation-induced defects in the heat treatment process; 4) sy-nergistic effect of hydrogen and helium." @default.
- W3117112913 created "2021-01-05" @default.
- W3117112913 creator A5025050242 @default.
- W3117112913 creator A5065488801 @default.
- W3117112913 date "2020-01-01" @default.
- W3117112913 modified "2023-09-24" @default.
- W3117112913 title "Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy" @default.
- W3117112913 cites W1200523200 @default.
- W3117112913 cites W1963707245 @default.
- W3117112913 cites W1964148045 @default.
- W3117112913 cites W1966337119 @default.
- W3117112913 cites W1971933268 @default.
- W3117112913 cites W1977504416 @default.
- W3117112913 cites W1981356823 @default.
- W3117112913 cites W1983278200 @default.
- W3117112913 cites W1986721840 @default.
- W3117112913 cites W1993329142 @default.
- W3117112913 cites W1993360824 @default.
- W3117112913 cites W2002843310 @default.
- W3117112913 cites W2013115387 @default.
- W3117112913 cites W2017590435 @default.
- W3117112913 cites W2018137458 @default.
- W3117112913 cites W2023290535 @default.
- W3117112913 cites W2026637956 @default.
- W3117112913 cites W2030321554 @default.
- W3117112913 cites W2031098712 @default.
- W3117112913 cites W2032323312 @default.
- W3117112913 cites W2036093624 @default.
- W3117112913 cites W2037623092 @default.
- W3117112913 cites W2038788293 @default.
- W3117112913 cites W2038958116 @default.
- W3117112913 cites W2041532469 @default.
- W3117112913 cites W2041916547 @default.
- W3117112913 cites W2042703864 @default.
- W3117112913 cites W2051650790 @default.
- W3117112913 cites W2057150682 @default.
- W3117112913 cites W2057608170 @default.
- W3117112913 cites W2061585526 @default.
- W3117112913 cites W2068154327 @default.
- W3117112913 cites W2080200283 @default.
- W3117112913 cites W2083599293 @default.
- W3117112913 cites W2084500104 @default.
- W3117112913 cites W2092755235 @default.
- W3117112913 cites W2095341065 @default.
- W3117112913 cites W2097881586 @default.
- W3117112913 cites W2114218530 @default.
- W3117112913 cites W2115719017 @default.
- W3117112913 cites W2124272368 @default.
- W3117112913 cites W2145298642 @default.
- W3117112913 cites W2155253169 @default.
- W3117112913 cites W2256211498 @default.
- W3117112913 cites W2324335459 @default.
- W3117112913 cites W2469645981 @default.
- W3117112913 cites W2497733091 @default.
- W3117112913 cites W2508254082 @default.
- W3117112913 cites W2512761052 @default.
- W3117112913 cites W2529775769 @default.
- W3117112913 cites W2584358837 @default.
- W3117112913 cites W2587937379 @default.
- W3117112913 cites W2600633556 @default.
- W3117112913 cites W2605436577 @default.
- W3117112913 cites W274626273 @default.
- W3117112913 cites W2750430026 @default.
- W3117112913 cites W2790393042 @default.
- W3117112913 cites W2794892512 @default.
- W3117112913 cites W3104175568 @default.
- W3117112913 cites W923764059 @default.
- W3117112913 cites W1982973701 @default.
- W3117112913 doi "https://doi.org/10.7498/aps.69.20200724" @default.
- W3117112913 hasPublicationYear "2020" @default.
- W3117112913 type Work @default.
- W3117112913 sameAs 3117112913 @default.
- W3117112913 citedByCount "3" @default.
- W3117112913 countsByYear W31171129132021 @default.
- W3117112913 countsByYear W31171129132022 @default.
- W3117112913 countsByYear W31171129132023 @default.
- W3117112913 crossrefType "journal-article" @default.
- W3117112913 hasAuthorship W3117112913A5025050242 @default.
- W3117112913 hasAuthorship W3117112913A5065488801 @default.
- W3117112913 hasBestOaLocation W31171129131 @default.
- W3117112913 hasConcept C114221277 @default.
- W3117112913 hasConcept C121332964 @default.
- W3117112913 hasConcept C1276947 @default.
- W3117112913 hasConcept C12989632 @default.
- W3117112913 hasConcept C147120987 @default.
- W3117112913 hasConcept C152568617 @default.
- W3117112913 hasConcept C184779094 @default.
- W3117112913 hasConcept C185544564 @default.
- W3117112913 hasConcept C192562407 @default.
- W3117112913 hasConcept C201941533 @default.
- W3117112913 hasConcept C202100949 @default.
- W3117112913 hasConcept C26873012 @default.
- W3117112913 hasConcept C2778711141 @default.
- W3117112913 hasConcept C2985595821 @default.
- W3117112913 hasConcept C4839761 @default.
- W3117112913 hasConcept C512968161 @default.
- W3117112913 hasConcept C546029482 @default.
- W3117112913 hasConcept C61048295 @default.