Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117130769> ?p ?o ?g. }
- W3117130769 endingPage "107488" @default.
- W3117130769 startingPage "107488" @default.
- W3117130769 abstract "Concrete is a multi-phase heterogeneous material in which the interfacial transition zone (ITZ) between aggregates and mortar significantly affects the cracking behaviour of concrete, especially under tensile load. In this paper, the artificial neural network (ANN) method is applied in predicting the fracture properties of ITZ in concrete. To form the data pool for the training of the ANN, a large number of two-dimensional (2D) meso-scale fracture simulation of concrete under direct tensile load is conducted. Cohesive crack elements are used in simulating arbitrary cracking in the ITZ and mortar. After the verification of the trained ANN model, the tensile strength and fracture energy of the concrete ITZ are predicted by using the RILEM direct tensile test results, i.e., stress–displacement curve, as the input for the ANN. It has been found that, the trained ANN performs well in predicting the ITZ properties and the computed stress–displacement curve together with the optimized ITZ fracture parameters has a good agreement with that from the RILEM test results. The randomness of aggregates has little effect on the predicted ITZ tensile strength while it becomes slightly bigger on the predicted ITZ fracture energy. The tensile strength ratio of ITZ to mortar are calculated 0.38–0.47 and the fracture energy ratio of ITZ to mortar are 0.18–0.58. These inversely predicted fracture properties of concrete ITZ can be useful complementation to the existing dataset and 2D fracture simulation of concrete structures." @default.
- W3117130769 created "2021-01-05" @default.
- W3117130769 creator A5007160308 @default.
- W3117130769 creator A5047121176 @default.
- W3117130769 creator A5073325178 @default.
- W3117130769 creator A5077792583 @default.
- W3117130769 date "2021-02-01" @default.
- W3117130769 modified "2023-10-16" @default.
- W3117130769 title "Using artificial neural network to predict the fracture properties of the interfacial transition zone of concrete at the meso-scale" @default.
- W3117130769 cites W1987873047 @default.
- W3117130769 cites W1993193909 @default.
- W3117130769 cites W2001349439 @default.
- W3117130769 cites W2010136721 @default.
- W3117130769 cites W2010755175 @default.
- W3117130769 cites W2012835304 @default.
- W3117130769 cites W2045729094 @default.
- W3117130769 cites W2050356426 @default.
- W3117130769 cites W2053177642 @default.
- W3117130769 cites W2058410575 @default.
- W3117130769 cites W2063126691 @default.
- W3117130769 cites W2080569410 @default.
- W3117130769 cites W2082508622 @default.
- W3117130769 cites W2093268261 @default.
- W3117130769 cites W2137552370 @default.
- W3117130769 cites W2139218906 @default.
- W3117130769 cites W2144501853 @default.
- W3117130769 cites W2149917904 @default.
- W3117130769 cites W2177292520 @default.
- W3117130769 cites W2237202108 @default.
- W3117130769 cites W2324697120 @default.
- W3117130769 cites W2531796344 @default.
- W3117130769 cites W2551474405 @default.
- W3117130769 cites W2561877798 @default.
- W3117130769 cites W2581096747 @default.
- W3117130769 cites W2588351940 @default.
- W3117130769 cites W2612427551 @default.
- W3117130769 cites W2742881935 @default.
- W3117130769 cites W2766173189 @default.
- W3117130769 cites W2790561384 @default.
- W3117130769 cites W2799375516 @default.
- W3117130769 cites W2804971138 @default.
- W3117130769 cites W2808689604 @default.
- W3117130769 cites W2884229224 @default.
- W3117130769 cites W2908991710 @default.
- W3117130769 cites W2910029925 @default.
- W3117130769 cites W2938000189 @default.
- W3117130769 cites W3042325524 @default.
- W3117130769 doi "https://doi.org/10.1016/j.engfracmech.2020.107488" @default.
- W3117130769 hasPublicationYear "2021" @default.
- W3117130769 type Work @default.
- W3117130769 sameAs 3117130769 @default.
- W3117130769 citedByCount "38" @default.
- W3117130769 countsByYear W31171307692021 @default.
- W3117130769 countsByYear W31171307692022 @default.
- W3117130769 countsByYear W31171307692023 @default.
- W3117130769 crossrefType "journal-article" @default.
- W3117130769 hasAuthorship W3117130769A5007160308 @default.
- W3117130769 hasAuthorship W3117130769A5047121176 @default.
- W3117130769 hasAuthorship W3117130769A5073325178 @default.
- W3117130769 hasAuthorship W3117130769A5077792583 @default.
- W3117130769 hasBestOaLocation W31171307692 @default.
- W3117130769 hasConcept C112950240 @default.
- W3117130769 hasConcept C127413603 @default.
- W3117130769 hasConcept C130767629 @default.
- W3117130769 hasConcept C138885662 @default.
- W3117130769 hasConcept C159985019 @default.
- W3117130769 hasConcept C192562407 @default.
- W3117130769 hasConcept C21036866 @default.
- W3117130769 hasConcept C41895202 @default.
- W3117130769 hasConcept C43369102 @default.
- W3117130769 hasConcept C58396970 @default.
- W3117130769 hasConcept C59085676 @default.
- W3117130769 hasConcept C66938386 @default.
- W3117130769 hasConceptScore W3117130769C112950240 @default.
- W3117130769 hasConceptScore W3117130769C127413603 @default.
- W3117130769 hasConceptScore W3117130769C130767629 @default.
- W3117130769 hasConceptScore W3117130769C138885662 @default.
- W3117130769 hasConceptScore W3117130769C159985019 @default.
- W3117130769 hasConceptScore W3117130769C192562407 @default.
- W3117130769 hasConceptScore W3117130769C21036866 @default.
- W3117130769 hasConceptScore W3117130769C41895202 @default.
- W3117130769 hasConceptScore W3117130769C43369102 @default.
- W3117130769 hasConceptScore W3117130769C58396970 @default.
- W3117130769 hasConceptScore W3117130769C59085676 @default.
- W3117130769 hasConceptScore W3117130769C66938386 @default.
- W3117130769 hasFunder F4320321408 @default.
- W3117130769 hasFunder F4320322449 @default.
- W3117130769 hasLocation W31171307691 @default.
- W3117130769 hasLocation W31171307692 @default.
- W3117130769 hasOpenAccess W3117130769 @default.
- W3117130769 hasPrimaryLocation W31171307691 @default.
- W3117130769 hasRelatedWork W1994277682 @default.
- W3117130769 hasRelatedWork W2002789351 @default.
- W3117130769 hasRelatedWork W2022371719 @default.
- W3117130769 hasRelatedWork W2027971144 @default.
- W3117130769 hasRelatedWork W2358908412 @default.
- W3117130769 hasRelatedWork W2368761274 @default.
- W3117130769 hasRelatedWork W2372746183 @default.