Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117132089> ?p ?o ?g. }
- W3117132089 abstract "Laser plasma instabilities are problematic for inertial confinement fusion because they can spoil illumination uniformity, reduce laser-target coupling, and create unwanted fast electrons. Recent experiments and simulations have shown that self-seeded stimulated rotational Raman scattering (SRRS) in air might achieve enough spectral broadening to mitigate these instabilities with only moderate unwanted broadening of the focal spot. The theoretical model for the simulations included chaotic broadband and spatially multimode light, but was a scalar formulation suitable for only linear polarization, where the SRRS gains and spectral broadening are limited by Stokes--anti-Stokes coupling. This paper derives a tensor formulation of SRRS theory suitable for modeling spectral broadening of arbitrarily polarized spatially and temporally incoherent light; it then describes the algorithms used to simulate the theory and provides some preliminary results that compare linear and elliptical polarizations. It begins with a paraxial wave equation for an arbitrarily polarized optical field envelope, which is phase modulated by a term proportional to a Raman driven molecular polarizability tensor. Treating the air molecules as rigid rotators, it uses a quantum treatment to derive a driven harmonic oscillator equation for that polarizability, then expresses these vector and tensor equations in terms of the field's right- and left-handed circular polarization components to derive the final coupled equations for arbitrary polarization. The formulation includes possible ac Stark shift contributions, but shows that they are negligible for intensities below $10phantom{rule{0.16em}{0ex}}mathrm{GW}/{mathrm{cm}}^{2}$. It then describes the algorithms used in the simulation code and the numerical model of the chaotic light, whose initial spectral bandwidth is broad enough to self-seed the SRRS. In this algorithm, the SRRS process accurately conserves the total energy at each axial plane along the propagation path. Finally, it compares simulations of power spectra and far-field profiles for elliptical vs linear polarization, which show that elliptically polarized light produces significantly more broadening of both profiles than linear polarization. For linear polarization, the SRRS process reduces the incident coherence time from 0.54 to 0.27 ps; for elliptical polarization, it reduces to 0.19 ps. The theory and simulation algorithms presented here provide a framework for evaluating techniques that combine beams of alternating circular polarizations with different spectra and angular divergences to improve SRRS spectral broadening without excessive focal spot broadening." @default.
- W3117132089 created "2021-01-05" @default.
- W3117132089 creator A5006066157 @default.
- W3117132089 creator A5018746633 @default.
- W3117132089 creator A5020992507 @default.
- W3117132089 creator A5027883791 @default.
- W3117132089 creator A5048526018 @default.
- W3117132089 creator A5051590080 @default.
- W3117132089 creator A5066438694 @default.
- W3117132089 date "2020-12-23" @default.
- W3117132089 modified "2023-10-16" @default.
- W3117132089 title "Stimulated rotational Raman scattering of arbitrarily polarized broadband light" @default.
- W3117132089 cites W1534595020 @default.
- W3117132089 cites W1894661642 @default.
- W3117132089 cites W1973711143 @default.
- W3117132089 cites W1978977330 @default.
- W3117132089 cites W1986326846 @default.
- W3117132089 cites W1989384794 @default.
- W3117132089 cites W1993925532 @default.
- W3117132089 cites W2003082418 @default.
- W3117132089 cites W2020097657 @default.
- W3117132089 cites W2022652485 @default.
- W3117132089 cites W2023673176 @default.
- W3117132089 cites W2028156872 @default.
- W3117132089 cites W2052721383 @default.
- W3117132089 cites W2056858791 @default.
- W3117132089 cites W2067927239 @default.
- W3117132089 cites W2073568652 @default.
- W3117132089 cites W2080577096 @default.
- W3117132089 cites W2087863127 @default.
- W3117132089 cites W2094064620 @default.
- W3117132089 cites W2095505227 @default.
- W3117132089 cites W2129314509 @default.
- W3117132089 cites W2136123391 @default.
- W3117132089 cites W2169869928 @default.
- W3117132089 cites W2178944721 @default.
- W3117132089 cites W2233701775 @default.
- W3117132089 cites W2239676166 @default.
- W3117132089 cites W2530326138 @default.
- W3117132089 cites W2607370066 @default.
- W3117132089 cites W2730871889 @default.
- W3117132089 cites W2766023980 @default.
- W3117132089 cites W2795197837 @default.
- W3117132089 cites W2969391708 @default.
- W3117132089 cites W2997414041 @default.
- W3117132089 cites W2999357097 @default.
- W3117132089 cites W3011668892 @default.
- W3117132089 cites W3023228120 @default.
- W3117132089 doi "https://doi.org/10.1103/physreva.102.063530" @default.
- W3117132089 hasPublicationYear "2020" @default.
- W3117132089 type Work @default.
- W3117132089 sameAs 3117132089 @default.
- W3117132089 citedByCount "3" @default.
- W3117132089 countsByYear W31171320892021 @default.
- W3117132089 countsByYear W31171320892023 @default.
- W3117132089 crossrefType "journal-article" @default.
- W3117132089 hasAuthorship W3117132089A5006066157 @default.
- W3117132089 hasAuthorship W3117132089A5018746633 @default.
- W3117132089 hasAuthorship W3117132089A5020992507 @default.
- W3117132089 hasAuthorship W3117132089A5027883791 @default.
- W3117132089 hasAuthorship W3117132089A5048526018 @default.
- W3117132089 hasAuthorship W3117132089A5051590080 @default.
- W3117132089 hasAuthorship W3117132089A5066438694 @default.
- W3117132089 hasConcept C107190969 @default.
- W3117132089 hasConcept C120665830 @default.
- W3117132089 hasConcept C121332964 @default.
- W3117132089 hasConcept C139287275 @default.
- W3117132089 hasConcept C147789679 @default.
- W3117132089 hasConcept C168834538 @default.
- W3117132089 hasConcept C169573571 @default.
- W3117132089 hasConcept C185592680 @default.
- W3117132089 hasConcept C188141570 @default.
- W3117132089 hasConcept C191486275 @default.
- W3117132089 hasConcept C205049153 @default.
- W3117132089 hasConcept C2524010 @default.
- W3117132089 hasConcept C30475298 @default.
- W3117132089 hasConcept C32909587 @default.
- W3117132089 hasConcept C33923547 @default.
- W3117132089 hasConcept C40003534 @default.
- W3117132089 hasConcept C4839761 @default.
- W3117132089 hasConcept C520434653 @default.
- W3117132089 hasConcept C56034020 @default.
- W3117132089 hasConcept C57691317 @default.
- W3117132089 hasConcept C62103226 @default.
- W3117132089 hasConcept C62520636 @default.
- W3117132089 hasConceptScore W3117132089C107190969 @default.
- W3117132089 hasConceptScore W3117132089C120665830 @default.
- W3117132089 hasConceptScore W3117132089C121332964 @default.
- W3117132089 hasConceptScore W3117132089C139287275 @default.
- W3117132089 hasConceptScore W3117132089C147789679 @default.
- W3117132089 hasConceptScore W3117132089C168834538 @default.
- W3117132089 hasConceptScore W3117132089C169573571 @default.
- W3117132089 hasConceptScore W3117132089C185592680 @default.
- W3117132089 hasConceptScore W3117132089C188141570 @default.
- W3117132089 hasConceptScore W3117132089C191486275 @default.
- W3117132089 hasConceptScore W3117132089C205049153 @default.
- W3117132089 hasConceptScore W3117132089C2524010 @default.
- W3117132089 hasConceptScore W3117132089C30475298 @default.
- W3117132089 hasConceptScore W3117132089C32909587 @default.
- W3117132089 hasConceptScore W3117132089C33923547 @default.