Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117188416> ?p ?o ?g. }
- W3117188416 endingPage "382" @default.
- W3117188416 startingPage "371" @default.
- W3117188416 abstract "Most seizure forecasting algorithms have relied on features specific to electroencephalographic recordings. Environmental and physiological factors, such as weather and sleep, have long been suspected to affect brain activity and seizure occurrence but have not been fully explored as prior information for seizure forecasts in a patient-specific analysis. The study aimed to quantify whether sleep, weather, and temporal factors (time of day, day of week, and lunar phase) can provide predictive prior probabilities that may be used to improve seizure forecasts.This study performed post hoc analysis on data from eight patients with a total of 12.2 years of continuous intracranial electroencephalographic recordings (average = 1.5 years, range = 1.0-2.1 years), originally collected in a prospective trial. Patients also had sleep scoring and location-specific weather data. Histograms of future seizure likelihood were generated for each feature. The predictive utility of individual features was measured using a Bayesian approach to combine different features into an overall forecast of seizure likelihood. Performance of different feature combinations was compared using the area under the receiver operating curve. Performance evaluation was pseudoprospective.For the eight patients studied, seizures could be predicted above chance accuracy using sleep (five patients), weather (two patients), and temporal features (six patients). Forecasts using combined features performed significantly better than chance in six patients. For four of these patients, combined forecasts outperformed any individual feature.Environmental and physiological data, including sleep, weather, and temporal features, provide significant predictive information on upcoming seizures. Although forecasts did not perform as well as algorithms that use invasive intracranial electroencephalography, the results were significantly above chance. Complementary signal features derived from an individual's historic seizure records may provide useful prior information to augment traditional seizure detection or forecasting algorithms. Importantly, many predictive features used in this study can be measured noninvasively." @default.
- W3117188416 created "2021-01-05" @default.
- W3117188416 creator A5000946768 @default.
- W3117188416 creator A5014100961 @default.
- W3117188416 creator A5016253894 @default.
- W3117188416 creator A5023390509 @default.
- W3117188416 creator A5046208845 @default.
- W3117188416 creator A5052643152 @default.
- W3117188416 creator A5065275567 @default.
- W3117188416 creator A5066512588 @default.
- W3117188416 creator A5069146692 @default.
- W3117188416 creator A5069212263 @default.
- W3117188416 date "2020-12-30" @default.
- W3117188416 modified "2023-10-16" @default.
- W3117188416 title "Identifying seizure risk factors: A comparison of sleep, weather, and temporal features using a Bayesian forecast" @default.
- W3117188416 cites W1566689562 @default.
- W3117188416 cites W1925011105 @default.
- W3117188416 cites W1972496509 @default.
- W3117188416 cites W1985223421 @default.
- W3117188416 cites W1988043210 @default.
- W3117188416 cites W2009902427 @default.
- W3117188416 cites W2013424529 @default.
- W3117188416 cites W2015165863 @default.
- W3117188416 cites W2020713213 @default.
- W3117188416 cites W2025990419 @default.
- W3117188416 cites W2032034777 @default.
- W3117188416 cites W2036740224 @default.
- W3117188416 cites W2055703892 @default.
- W3117188416 cites W2055724818 @default.
- W3117188416 cites W2064834701 @default.
- W3117188416 cites W2086771798 @default.
- W3117188416 cites W2088060843 @default.
- W3117188416 cites W2088222765 @default.
- W3117188416 cites W2096778839 @default.
- W3117188416 cites W2102150307 @default.
- W3117188416 cites W2113981289 @default.
- W3117188416 cites W2120853742 @default.
- W3117188416 cites W2133567003 @default.
- W3117188416 cites W2135837882 @default.
- W3117188416 cites W2138942362 @default.
- W3117188416 cites W2171266607 @default.
- W3117188416 cites W2200254210 @default.
- W3117188416 cites W2320560376 @default.
- W3117188416 cites W2338092193 @default.
- W3117188416 cites W2342906508 @default.
- W3117188416 cites W2519394142 @default.
- W3117188416 cites W2578325050 @default.
- W3117188416 cites W2613785623 @default.
- W3117188416 cites W2738797743 @default.
- W3117188416 cites W2753805150 @default.
- W3117188416 cites W2772152119 @default.
- W3117188416 cites W2774975003 @default.
- W3117188416 cites W2782520840 @default.
- W3117188416 cites W2801435464 @default.
- W3117188416 cites W2887044684 @default.
- W3117188416 cites W2888598199 @default.
- W3117188416 cites W2890039708 @default.
- W3117188416 cites W2895353928 @default.
- W3117188416 cites W2912348337 @default.
- W3117188416 cites W2966863371 @default.
- W3117188416 cites W3006574510 @default.
- W3117188416 cites W3010417966 @default.
- W3117188416 cites W3023664471 @default.
- W3117188416 doi "https://doi.org/10.1111/epi.16785" @default.
- W3117188416 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8012030" @default.
- W3117188416 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33377501" @default.
- W3117188416 hasPublicationYear "2020" @default.
- W3117188416 type Work @default.
- W3117188416 sameAs 3117188416 @default.
- W3117188416 citedByCount "18" @default.
- W3117188416 countsByYear W31171884162021 @default.
- W3117188416 countsByYear W31171884162022 @default.
- W3117188416 countsByYear W31171884162023 @default.
- W3117188416 crossrefType "journal-article" @default.
- W3117188416 hasAuthorship W3117188416A5000946768 @default.
- W3117188416 hasAuthorship W3117188416A5014100961 @default.
- W3117188416 hasAuthorship W3117188416A5016253894 @default.
- W3117188416 hasAuthorship W3117188416A5023390509 @default.
- W3117188416 hasAuthorship W3117188416A5046208845 @default.
- W3117188416 hasAuthorship W3117188416A5052643152 @default.
- W3117188416 hasAuthorship W3117188416A5065275567 @default.
- W3117188416 hasAuthorship W3117188416A5066512588 @default.
- W3117188416 hasAuthorship W3117188416A5069146692 @default.
- W3117188416 hasAuthorship W3117188416A5069212263 @default.
- W3117188416 hasBestOaLocation W31171884162 @default.
- W3117188416 hasConcept C107673813 @default.
- W3117188416 hasConcept C138885662 @default.
- W3117188416 hasConcept C154945302 @default.
- W3117188416 hasConcept C15744967 @default.
- W3117188416 hasConcept C169760540 @default.
- W3117188416 hasConcept C2776401178 @default.
- W3117188416 hasConcept C2778186239 @default.
- W3117188416 hasConcept C41008148 @default.
- W3117188416 hasConcept C41895202 @default.
- W3117188416 hasConcept C522805319 @default.
- W3117188416 hasConceptScore W3117188416C107673813 @default.
- W3117188416 hasConceptScore W3117188416C138885662 @default.
- W3117188416 hasConceptScore W3117188416C154945302 @default.