Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117265127> ?p ?o ?g. }
- W3117265127 endingPage "882" @default.
- W3117265127 startingPage "872" @default.
- W3117265127 abstract "Sketch face recognition refers to the process of matching sketches to photos. Recently, there has been a growing interest in using deep learning to learn discriminative features for sketch face recognition. However, the success of deep learning relies on the large-scale paired images to counteract effects such as over-fitting, since the amount of the paired training data is relatively small, the discriminative power of the deeply learned features will inevitably be reduced. This paper proposes a novel deep metric learning method termed domain alignment embedding network for sketch face recognition. Specifically, a training episode strategy is designed to alleviate the small sample problem, and a domain alignment embedding loss is proposed to guide the feature embedding network to learn discriminative features. Extensive experimental results on the UoM-SGFSv2 and PRIP-VSGC datasets are verified to show the effectiveness of the proposed method." @default.
- W3117265127 created "2021-01-05" @default.
- W3117265127 creator A5011712322 @default.
- W3117265127 creator A5049646773 @default.
- W3117265127 creator A5074242762 @default.
- W3117265127 creator A5082782200 @default.
- W3117265127 creator A5083073196 @default.
- W3117265127 date "2021-01-01" @default.
- W3117265127 modified "2023-10-16" @default.
- W3117265127 title "Domain Alignment Embedding Network for Sketch Face Recognition" @default.
- W3117265127 cites W1529583686 @default.
- W3117265127 cites W1972953456 @default.
- W3117265127 cites W1980093854 @default.
- W3117265127 cites W1981902088 @default.
- W3117265127 cites W1995761756 @default.
- W3117265127 cites W1997011019 @default.
- W3117265127 cites W2004007128 @default.
- W3117265127 cites W2034136097 @default.
- W3117265127 cites W2049352011 @default.
- W3117265127 cites W2076631638 @default.
- W3117265127 cites W2108598243 @default.
- W3117265127 cites W2120749805 @default.
- W3117265127 cites W2149481809 @default.
- W3117265127 cites W2153288431 @default.
- W3117265127 cites W2325939864 @default.
- W3117265127 cites W2341755855 @default.
- W3117265127 cites W2563608705 @default.
- W3117265127 cites W2626578807 @default.
- W3117265127 cites W2750979989 @default.
- W3117265127 cites W2779862145 @default.
- W3117265127 cites W2809736977 @default.
- W3117265127 cites W2890764008 @default.
- W3117265127 cites W2904581885 @default.
- W3117265127 cites W2904897537 @default.
- W3117265127 cites W2912990735 @default.
- W3117265127 cites W2919115771 @default.
- W3117265127 cites W2921594405 @default.
- W3117265127 cites W2946105317 @default.
- W3117265127 cites W2949228289 @default.
- W3117265127 cites W2950007690 @default.
- W3117265127 cites W2956531365 @default.
- W3117265127 cites W2962753657 @default.
- W3117265127 cites W2964154847 @default.
- W3117265127 cites W2970927579 @default.
- W3117265127 cites W2976410786 @default.
- W3117265127 cites W2987002398 @default.
- W3117265127 cites W3000490917 @default.
- W3117265127 cites W3001208314 @default.
- W3117265127 cites W3006196268 @default.
- W3117265127 cites W3018976951 @default.
- W3117265127 cites W3034494316 @default.
- W3117265127 cites W3035303987 @default.
- W3117265127 cites W3041399281 @default.
- W3117265127 cites W3046698617 @default.
- W3117265127 cites W3099206234 @default.
- W3117265127 cites W3101998545 @default.
- W3117265127 doi "https://doi.org/10.1109/access.2020.3047108" @default.
- W3117265127 hasPublicationYear "2021" @default.
- W3117265127 type Work @default.
- W3117265127 sameAs 3117265127 @default.
- W3117265127 citedByCount "3" @default.
- W3117265127 countsByYear W31172651272022 @default.
- W3117265127 countsByYear W31172651272023 @default.
- W3117265127 crossrefType "journal-article" @default.
- W3117265127 hasAuthorship W3117265127A5011712322 @default.
- W3117265127 hasAuthorship W3117265127A5049646773 @default.
- W3117265127 hasAuthorship W3117265127A5074242762 @default.
- W3117265127 hasAuthorship W3117265127A5082782200 @default.
- W3117265127 hasAuthorship W3117265127A5083073196 @default.
- W3117265127 hasBestOaLocation W31172651271 @default.
- W3117265127 hasConcept C105795698 @default.
- W3117265127 hasConcept C108583219 @default.
- W3117265127 hasConcept C11413529 @default.
- W3117265127 hasConcept C119857082 @default.
- W3117265127 hasConcept C132900626 @default.
- W3117265127 hasConcept C134306372 @default.
- W3117265127 hasConcept C138885662 @default.
- W3117265127 hasConcept C144024400 @default.
- W3117265127 hasConcept C153180895 @default.
- W3117265127 hasConcept C154945302 @default.
- W3117265127 hasConcept C159437735 @default.
- W3117265127 hasConcept C162324750 @default.
- W3117265127 hasConcept C165064840 @default.
- W3117265127 hasConcept C176217482 @default.
- W3117265127 hasConcept C207347870 @default.
- W3117265127 hasConcept C21547014 @default.
- W3117265127 hasConcept C2776401178 @default.
- W3117265127 hasConcept C2779231336 @default.
- W3117265127 hasConcept C2779304628 @default.
- W3117265127 hasConcept C31510193 @default.
- W3117265127 hasConcept C31972630 @default.
- W3117265127 hasConcept C33923547 @default.
- W3117265127 hasConcept C36289849 @default.
- W3117265127 hasConcept C36503486 @default.
- W3117265127 hasConcept C41008148 @default.
- W3117265127 hasConcept C41608201 @default.
- W3117265127 hasConcept C41895202 @default.
- W3117265127 hasConcept C52622490 @default.