Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117304328> ?p ?o ?g. }
- W3117304328 endingPage "220501" @default.
- W3117304328 startingPage "220501" @default.
- W3117304328 abstract "In the past few decades, stochastic resonance (SR) has attracted considerable attention of researchers due to a curious phenomenon appearing in a nonlinear system:an input weak periodic signal can be amplified and optimized by the assistance of noise. It has been proved that the classical stochastic resonance (CSR) has the adiabatic limit, so the performance of CSR in high-frequency signal detection is restricted in practical engineering. To break the restriction, a number of methods have been suggested, such as re-scaling frequency stochastic resonance (RFSR), parameters normalized stochastic resonance, modulated stochastic resonance, etc. Although the high-frequency signal can be detected by the above methods in specific conditions, there are some problems that restrict their applications in different circumstances. In this paper, a new method, stochastic resonance based on frequency-information exchange (FIESR), is developed to deal with the adiabatic limit of CSR. The mechanism of FIESR is analyzed in detail by the theory of single-side band modulation (SSB) which is based on phase shift. The information in small-parameter frequency domain is swapped with the information of the high-frequency target signal. Then the amplitude and phase of the target signal are moved to the small-parameter frequency domain. Consequently the target signal can be enhanced and detected by CSR in small-parameter frequency domain. Besides, a necessary plan, narrow band spectrum exchange, is put forward to diminish the influence of the spectrum leakage of FIESR. It is well known that the RFSR is a method of detecting the practical signal with large-parameter frequency. Through rescaling the time interval of the signal and compressing its frequency according to the scale R, the large-parameter frequency is compressed into a small-parameter frequency. The RFSR has a good performance in mechanical incipient fault diagnosis. However, it has a high sampling ratio limitation. The ratio of sampling frequency to target signal frequency is more than 50. To overcome this weakness of RFSR, frequency-information exchange (FIE) is introduced into RFSR. A new signal detection method based on FIE and RFSR, named F-RFSR, is put forward simultaneously. The flow of F-RFSR consists of three steps. Firstly, the frequency of the original input signal is compressed linearly according to the estimated scale. Then, the frequency information is exchanged between the compressed target signal and the small-parameter signal in the frequency domain. Finally, the CSR is used to amplify and detect the weak target signal processed by re-scaling frequency and FIE. Performance analysis of signal detection and numerical simulation are carried out to demonstrate that F-RFSR has more efficient sampling ratio than RFSR for practical application." @default.
- W3117304328 created "2021-01-05" @default.
- W3117304328 creator A5006687074 @default.
- W3117304328 creator A5040774062 @default.
- W3117304328 creator A5057824108 @default.
- W3117304328 creator A5082844917 @default.
- W3117304328 date "2016-01-01" @default.
- W3117304328 modified "2023-10-18" @default.
- W3117304328 title "Stochastic resonance based on frequency information exchange" @default.
- W3117304328 cites W1561822045 @default.
- W3117304328 cites W170695953 @default.
- W3117304328 cites W1869377443 @default.
- W3117304328 cites W1970132143 @default.
- W3117304328 cites W1971999579 @default.
- W3117304328 cites W1987039797 @default.
- W3117304328 cites W1987921974 @default.
- W3117304328 cites W1994146659 @default.
- W3117304328 cites W2003367989 @default.
- W3117304328 cites W2016099127 @default.
- W3117304328 cites W2018628548 @default.
- W3117304328 cites W2035591701 @default.
- W3117304328 cites W2068501389 @default.
- W3117304328 cites W2070944105 @default.
- W3117304328 cites W2075854948 @default.
- W3117304328 cites W2086656625 @default.
- W3117304328 cites W2088954730 @default.
- W3117304328 cites W2116967254 @default.
- W3117304328 cites W3112113905 @default.
- W3117304328 cites W4211019631 @default.
- W3117304328 cites W789622932 @default.
- W3117304328 doi "https://doi.org/10.7498/aps.65.220501" @default.
- W3117304328 hasPublicationYear "2016" @default.
- W3117304328 type Work @default.
- W3117304328 sameAs 3117304328 @default.
- W3117304328 citedByCount "6" @default.
- W3117304328 countsByYear W31173043282018 @default.
- W3117304328 countsByYear W31173043282019 @default.
- W3117304328 countsByYear W31173043282022 @default.
- W3117304328 crossrefType "journal-article" @default.
- W3117304328 hasAuthorship W3117304328A5006687074 @default.
- W3117304328 hasAuthorship W3117304328A5040774062 @default.
- W3117304328 hasAuthorship W3117304328A5057824108 @default.
- W3117304328 hasAuthorship W3117304328A5082844917 @default.
- W3117304328 hasBestOaLocation W31173043281 @default.
- W3117304328 hasConcept C103824480 @default.
- W3117304328 hasConcept C105795698 @default.
- W3117304328 hasConcept C109663097 @default.
- W3117304328 hasConcept C115961682 @default.
- W3117304328 hasConcept C121332964 @default.
- W3117304328 hasConcept C121864883 @default.
- W3117304328 hasConcept C134306372 @default.
- W3117304328 hasConcept C139210041 @default.
- W3117304328 hasConcept C151201525 @default.
- W3117304328 hasConcept C154945302 @default.
- W3117304328 hasConcept C158622935 @default.
- W3117304328 hasConcept C19118579 @default.
- W3117304328 hasConcept C199360897 @default.
- W3117304328 hasConcept C207658827 @default.
- W3117304328 hasConcept C2779843651 @default.
- W3117304328 hasConcept C31972630 @default.
- W3117304328 hasConcept C33923547 @default.
- W3117304328 hasConcept C41008148 @default.
- W3117304328 hasConcept C62520636 @default.
- W3117304328 hasConcept C8272713 @default.
- W3117304328 hasConcept C93357160 @default.
- W3117304328 hasConcept C99498987 @default.
- W3117304328 hasConceptScore W3117304328C103824480 @default.
- W3117304328 hasConceptScore W3117304328C105795698 @default.
- W3117304328 hasConceptScore W3117304328C109663097 @default.
- W3117304328 hasConceptScore W3117304328C115961682 @default.
- W3117304328 hasConceptScore W3117304328C121332964 @default.
- W3117304328 hasConceptScore W3117304328C121864883 @default.
- W3117304328 hasConceptScore W3117304328C134306372 @default.
- W3117304328 hasConceptScore W3117304328C139210041 @default.
- W3117304328 hasConceptScore W3117304328C151201525 @default.
- W3117304328 hasConceptScore W3117304328C154945302 @default.
- W3117304328 hasConceptScore W3117304328C158622935 @default.
- W3117304328 hasConceptScore W3117304328C19118579 @default.
- W3117304328 hasConceptScore W3117304328C199360897 @default.
- W3117304328 hasConceptScore W3117304328C207658827 @default.
- W3117304328 hasConceptScore W3117304328C2779843651 @default.
- W3117304328 hasConceptScore W3117304328C31972630 @default.
- W3117304328 hasConceptScore W3117304328C33923547 @default.
- W3117304328 hasConceptScore W3117304328C41008148 @default.
- W3117304328 hasConceptScore W3117304328C62520636 @default.
- W3117304328 hasConceptScore W3117304328C8272713 @default.
- W3117304328 hasConceptScore W3117304328C93357160 @default.
- W3117304328 hasConceptScore W3117304328C99498987 @default.
- W3117304328 hasIssue "22" @default.
- W3117304328 hasLocation W31173043281 @default.
- W3117304328 hasOpenAccess W3117304328 @default.
- W3117304328 hasPrimaryLocation W31173043281 @default.
- W3117304328 hasRelatedWork W1984913998 @default.
- W3117304328 hasRelatedWork W1986231743 @default.
- W3117304328 hasRelatedWork W2022098220 @default.
- W3117304328 hasRelatedWork W2022615828 @default.
- W3117304328 hasRelatedWork W2032418398 @default.
- W3117304328 hasRelatedWork W2044975853 @default.