Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117321808> ?p ?o ?g. }
- W3117321808 endingPage "106669" @default.
- W3117321808 startingPage "106669" @default.
- W3117321808 abstract "Crude oil price prediction helps to get a better understanding of the global economic situation. Recently, variational mode decomposition (VMD) is introduced into the field of crude oil price forecasting. However, there is a lack of general selection rule for VMD-parameter and the widely adopted one-time decomposition strategy seems not suitable for practical application. Thus, an improved signal-energy based (ISE) rule is proposed as an improvement of the existing signal-energy based (SE) rule for the VMD-parameter selection. The moving-window strategy is put forward as a supplement for the decomposition strategy. Finally, a prediction model (VMD-LSTM-MW model) is built by combining the VMD, the long short-term memory (LSTM) network, and the moving-window strategy. The effectiveness of the ISE rule, the validity of the moving-window strategy, and the superiority of the VMD-LSTM-MW model are demonstrated by conducting monthly and daily crude oil price prediction experiments." @default.
- W3117321808 created "2021-01-05" @default.
- W3117321808 creator A5022499329 @default.
- W3117321808 creator A5073846535 @default.
- W3117321808 date "2021-02-01" @default.
- W3117321808 modified "2023-10-07" @default.
- W3117321808 title "A new crude oil price forecasting model based on variational mode decomposition" @default.
- W3117321808 cites W1689711448 @default.
- W3117321808 cites W1864468960 @default.
- W3117321808 cites W1975025227 @default.
- W3117321808 cites W1986478348 @default.
- W3117321808 cites W1988845048 @default.
- W3117321808 cites W1993887071 @default.
- W3117321808 cites W2000982976 @default.
- W3117321808 cites W2031769266 @default.
- W3117321808 cites W2057624533 @default.
- W3117321808 cites W2063163051 @default.
- W3117321808 cites W2064675550 @default.
- W3117321808 cites W2111971018 @default.
- W3117321808 cites W2484979138 @default.
- W3117321808 cites W2524052612 @default.
- W3117321808 cites W2612082766 @default.
- W3117321808 cites W2622999711 @default.
- W3117321808 cites W2755081817 @default.
- W3117321808 cites W2769020013 @default.
- W3117321808 cites W2783204403 @default.
- W3117321808 cites W2790667162 @default.
- W3117321808 cites W2802586787 @default.
- W3117321808 cites W2894229023 @default.
- W3117321808 cites W2896920734 @default.
- W3117321808 cites W2899284687 @default.
- W3117321808 cites W2900329809 @default.
- W3117321808 cites W2901964425 @default.
- W3117321808 cites W2912032242 @default.
- W3117321808 cites W2921990185 @default.
- W3117321808 cites W2936236242 @default.
- W3117321808 cites W2941861054 @default.
- W3117321808 cites W2943544609 @default.
- W3117321808 cites W2954139581 @default.
- W3117321808 cites W2954710255 @default.
- W3117321808 cites W2956244202 @default.
- W3117321808 cites W2961475402 @default.
- W3117321808 cites W2971595387 @default.
- W3117321808 cites W2981443245 @default.
- W3117321808 cites W3000500483 @default.
- W3117321808 cites W3008325040 @default.
- W3117321808 cites W3041016892 @default.
- W3117321808 cites W3124797040 @default.
- W3117321808 doi "https://doi.org/10.1016/j.knosys.2020.106669" @default.
- W3117321808 hasPublicationYear "2021" @default.
- W3117321808 type Work @default.
- W3117321808 sameAs 3117321808 @default.
- W3117321808 citedByCount "54" @default.
- W3117321808 countsByYear W31173218082021 @default.
- W3117321808 countsByYear W31173218082022 @default.
- W3117321808 countsByYear W31173218082023 @default.
- W3117321808 crossrefType "journal-article" @default.
- W3117321808 hasAuthorship W3117321808A5022499329 @default.
- W3117321808 hasAuthorship W3117321808A5073846535 @default.
- W3117321808 hasConcept C105795698 @default.
- W3117321808 hasConcept C111919701 @default.
- W3117321808 hasConcept C119599485 @default.
- W3117321808 hasConcept C124681953 @default.
- W3117321808 hasConcept C127413603 @default.
- W3117321808 hasConcept C131046424 @default.
- W3117321808 hasConcept C154945302 @default.
- W3117321808 hasConcept C162324750 @default.
- W3117321808 hasConcept C186370098 @default.
- W3117321808 hasConcept C188573790 @default.
- W3117321808 hasConcept C18903297 @default.
- W3117321808 hasConcept C202444582 @default.
- W3117321808 hasConcept C2984556133 @default.
- W3117321808 hasConcept C2987168347 @default.
- W3117321808 hasConcept C2994395435 @default.
- W3117321808 hasConcept C33923547 @default.
- W3117321808 hasConcept C41008148 @default.
- W3117321808 hasConcept C48677424 @default.
- W3117321808 hasConcept C50644808 @default.
- W3117321808 hasConcept C556758197 @default.
- W3117321808 hasConcept C78762247 @default.
- W3117321808 hasConcept C81917197 @default.
- W3117321808 hasConcept C86803240 @default.
- W3117321808 hasConcept C9652623 @default.
- W3117321808 hasConceptScore W3117321808C105795698 @default.
- W3117321808 hasConceptScore W3117321808C111919701 @default.
- W3117321808 hasConceptScore W3117321808C119599485 @default.
- W3117321808 hasConceptScore W3117321808C124681953 @default.
- W3117321808 hasConceptScore W3117321808C127413603 @default.
- W3117321808 hasConceptScore W3117321808C131046424 @default.
- W3117321808 hasConceptScore W3117321808C154945302 @default.
- W3117321808 hasConceptScore W3117321808C162324750 @default.
- W3117321808 hasConceptScore W3117321808C186370098 @default.
- W3117321808 hasConceptScore W3117321808C188573790 @default.
- W3117321808 hasConceptScore W3117321808C18903297 @default.
- W3117321808 hasConceptScore W3117321808C202444582 @default.
- W3117321808 hasConceptScore W3117321808C2984556133 @default.
- W3117321808 hasConceptScore W3117321808C2987168347 @default.
- W3117321808 hasConceptScore W3117321808C2994395435 @default.