Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117326958> ?p ?o ?g. }
- W3117326958 endingPage "2794" @default.
- W3117326958 startingPage "2772" @default.
- W3117326958 abstract "This study tests the applicability of three resampling methods (i.e. bootstrapping, random-subsampling and cross-validation) for enhancing the performance of eight machine-learning models: boosted regression trees, flexible discriminant analysis, random forests, mixture discriminate analysis, multivariate adaptive regression splines, classification and regression trees, support vector machines and generalized linear models, compared to the use of the original data. The results of models were evaluated using correlation (COR), area under curve (AUC), true skill statistic (TSS), receiver-operating characteristic and the probability of detection (POD). The evaluation showed that the bootstrapping technique improved the performance of all models. The Bootstrapping-random forest (with COR = 0.75, AUC = 0.92, TSS = 0.80 and POD = 0.98) proved to be the best model for landslide prediction. Among the 18 contributing factors, distance from fault, curvature and precipitation were the most influential in all 32 models .HighlightsHazard prediction of landslide by the 8 machine-learning (ML) models.Multiple morphometric, climatic, geologic, vegetation and human factors were used.Tests the applicability of three resampling methods.The performance of the ML models and coupling models were assessed." @default.
- W3117326958 created "2021-01-05" @default.
- W3117326958 creator A5030939796 @default.
- W3117326958 creator A5036176495 @default.
- W3117326958 creator A5036310727 @default.
- W3117326958 creator A5039444034 @default.
- W3117326958 creator A5062128630 @default.
- W3117326958 creator A5066136683 @default.
- W3117326958 date "2020-12-22" @default.
- W3117326958 modified "2023-10-02" @default.
- W3117326958 title "Evaluation of re-sampling methods on performance of machine learning models to predict landslide susceptibility" @default.
- W3117326958 cites W1192997862 @default.
- W3117326958 cites W1532630953 @default.
- W3117326958 cites W1541774929 @default.
- W3117326958 cites W1555328055 @default.
- W3117326958 cites W1973106681 @default.
- W3117326958 cites W1983631475 @default.
- W3117326958 cites W1988650824 @default.
- W3117326958 cites W1989713942 @default.
- W3117326958 cites W1993220166 @default.
- W3117326958 cites W1994454004 @default.
- W3117326958 cites W2002620848 @default.
- W3117326958 cites W2009067475 @default.
- W3117326958 cites W2013700833 @default.
- W3117326958 cites W2013713766 @default.
- W3117326958 cites W2028106853 @default.
- W3117326958 cites W2028124403 @default.
- W3117326958 cites W2039428711 @default.
- W3117326958 cites W2044579603 @default.
- W3117326958 cites W2053280690 @default.
- W3117326958 cites W2056392803 @default.
- W3117326958 cites W2057388082 @default.
- W3117326958 cites W2063987149 @default.
- W3117326958 cites W2069930921 @default.
- W3117326958 cites W207098890 @default.
- W3117326958 cites W2075496252 @default.
- W3117326958 cites W2077562320 @default.
- W3117326958 cites W2078964569 @default.
- W3117326958 cites W2080979633 @default.
- W3117326958 cites W2099454382 @default.
- W3117326958 cites W2114298716 @default.
- W3117326958 cites W2117689108 @default.
- W3117326958 cites W2153635508 @default.
- W3117326958 cites W2193898033 @default.
- W3117326958 cites W2217003378 @default.
- W3117326958 cites W2232758828 @default.
- W3117326958 cites W2239859944 @default.
- W3117326958 cites W2286708910 @default.
- W3117326958 cites W2287278712 @default.
- W3117326958 cites W2295784222 @default.
- W3117326958 cites W2299165651 @default.
- W3117326958 cites W2312122167 @default.
- W3117326958 cites W2324360419 @default.
- W3117326958 cites W2511416858 @default.
- W3117326958 cites W2552690540 @default.
- W3117326958 cites W2567326027 @default.
- W3117326958 cites W2615890952 @default.
- W3117326958 cites W2627821436 @default.
- W3117326958 cites W2754252800 @default.
- W3117326958 cites W2765742909 @default.
- W3117326958 cites W2775745878 @default.
- W3117326958 cites W2789369267 @default.
- W3117326958 cites W2849998820 @default.
- W3117326958 cites W2899282707 @default.
- W3117326958 cites W2905515121 @default.
- W3117326958 cites W2955615399 @default.
- W3117326958 cites W2956102632 @default.
- W3117326958 cites W2962948367 @default.
- W3117326958 cites W2969352830 @default.
- W3117326958 cites W2979806575 @default.
- W3117326958 cites W2990262107 @default.
- W3117326958 cites W2993767981 @default.
- W3117326958 cites W2994762661 @default.
- W3117326958 cites W2996089053 @default.
- W3117326958 cites W3004202498 @default.
- W3117326958 cites W3004446779 @default.
- W3117326958 cites W3005068726 @default.
- W3117326958 cites W3005403019 @default.
- W3117326958 cites W4239510810 @default.
- W3117326958 cites W4244998381 @default.
- W3117326958 cites W4251800481 @default.
- W3117326958 cites W783025397 @default.
- W3117326958 doi "https://doi.org/10.1080/10106049.2020.1837257" @default.
- W3117326958 hasPublicationYear "2020" @default.
- W3117326958 type Work @default.
- W3117326958 sameAs 3117326958 @default.
- W3117326958 citedByCount "10" @default.
- W3117326958 countsByYear W31173269582021 @default.
- W3117326958 countsByYear W31173269582022 @default.
- W3117326958 countsByYear W31173269582023 @default.
- W3117326958 crossrefType "journal-article" @default.
- W3117326958 hasAuthorship W3117326958A5030939796 @default.
- W3117326958 hasAuthorship W3117326958A5036176495 @default.
- W3117326958 hasAuthorship W3117326958A5036310727 @default.
- W3117326958 hasAuthorship W3117326958A5039444034 @default.
- W3117326958 hasAuthorship W3117326958A5062128630 @default.
- W3117326958 hasAuthorship W3117326958A5066136683 @default.
- W3117326958 hasConcept C105795698 @default.