Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117378548> ?p ?o ?g. }
- W3117378548 endingPage "120786" @default.
- W3117378548 startingPage "120786" @default.
- W3117378548 abstract "Abstract Background – Forced convection heat transfer in a cavity is of great importance due to its strong relevance to the practical aspects. Most of the studies focus on this topic from a steady perspective. But adding a flow modulator enhances a system's thermodynamic performance and makes such a system more realistic and widens the field of application. Such studies are unsteady and often quite expensive. As a result, only a few literatures are available with very idealistic geometric configuration and boundary conditions. Methodology – Two-dimensional unsteady continuity, momentum and energy equations are used for the mathematical modeling of the problem incorporating the Boussinesq approximation. A free triangular discretization scheme is adopted to solve the moving mesh problem by formulating the Arbitrary Lagrangian Euler (ALE) finite element approach. Parameters – Numerical studies are carried out for a fixed Prandtl number (Pr = 0.71) and fixed geometry of the rotating blade while varying the other parameters i.e. Rayleigh number, Reynolds number and Biot number. This dynamic boundary problem encompasses a wide range of parameters i.e. (100 ≤ Re ≤ 103), (103 ≤Bi ≤ 104) and (104 ≤ Ra ≤ 107) to evaluate the thermodynamic behavior of the thermo-fluid system. External flow condition is taken into consideration in terms of Biot number. Effects of these parameters are visualized through streamlines, heatlines, spatially average Nusselt number evaluated on the heated surface and system effectiveness. Objective – Present computational study focuses on the transient analysis of the conjugate forced convection flow and heat transfer characteristics in a hexagonal, air filled cavity. This cavity is equipped with a floor heater of constant heat flux under the rotational influence of an adiabatic flow modulator. And the blade is placed in the central position of the cavity which is rotating in the clockwise direction. Also, the whole computational domain is composed of four different domains, one convective domain and three solid domains. The solid domains are made of brick and glass as per their practical aspects. Findings – A Fast Fourier Transform (FFT) analysis is presented to comprehend the thermo-oscillating system response. FFT plots indicate that for all of the cases the fundamental frequency of the system response conforms to the blade frequency. Moreover, present numerical results show that the heat transfer effectiveness has an inverse relationship with the Biot and Rayleigh numbers while improves significantly with the increase of Reynolds number and reaches a critical state for Recr = 650. Higher Reynolds number also attenuates the degree of power spectrum. Conclusion – To attain a higher heat transfer effectiveness the thermo – fluid system should be operated at low Rayleigh number with higher Reynolds number." @default.
- W3117378548 created "2021-01-05" @default.
- W3117378548 creator A5075075633 @default.
- W3117378548 creator A5087024415 @default.
- W3117378548 creator A5090157509 @default.
- W3117378548 date "2021-03-01" @default.
- W3117378548 modified "2023-09-24" @default.
- W3117378548 title "Conjugate forced convection transient flow and heat transfer analysis in a hexagonal, partitioned, air filled cavity with dynamic modulator" @default.
- W3117378548 cites W1963678773 @default.
- W3117378548 cites W1966771317 @default.
- W3117378548 cites W1972092394 @default.
- W3117378548 cites W2002817936 @default.
- W3117378548 cites W2005490144 @default.
- W3117378548 cites W2018982742 @default.
- W3117378548 cites W2041899615 @default.
- W3117378548 cites W2050322335 @default.
- W3117378548 cites W2052576914 @default.
- W3117378548 cites W2052924732 @default.
- W3117378548 cites W2055642101 @default.
- W3117378548 cites W2060846887 @default.
- W3117378548 cites W2069013117 @default.
- W3117378548 cites W2081229365 @default.
- W3117378548 cites W2083639166 @default.
- W3117378548 cites W2085100047 @default.
- W3117378548 cites W2095125475 @default.
- W3117378548 cites W2111352333 @default.
- W3117378548 cites W2119885063 @default.
- W3117378548 cites W2120085855 @default.
- W3117378548 cites W2143728930 @default.
- W3117378548 cites W2164470476 @default.
- W3117378548 cites W2165235817 @default.
- W3117378548 cites W2171268257 @default.
- W3117378548 cites W2536574818 @default.
- W3117378548 cites W2552788018 @default.
- W3117378548 cites W2754594435 @default.
- W3117378548 cites W2761492440 @default.
- W3117378548 cites W2794297409 @default.
- W3117378548 cites W2889971609 @default.
- W3117378548 cites W2890815571 @default.
- W3117378548 cites W2902765820 @default.
- W3117378548 cites W2911455525 @default.
- W3117378548 cites W2944575566 @default.
- W3117378548 cites W2964989814 @default.
- W3117378548 cites W3008331589 @default.
- W3117378548 cites W3044662016 @default.
- W3117378548 cites W3044957620 @default.
- W3117378548 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2020.120786" @default.
- W3117378548 hasPublicationYear "2021" @default.
- W3117378548 type Work @default.
- W3117378548 sameAs 3117378548 @default.
- W3117378548 citedByCount "13" @default.
- W3117378548 countsByYear W31173785482021 @default.
- W3117378548 countsByYear W31173785482022 @default.
- W3117378548 countsByYear W31173785482023 @default.
- W3117378548 crossrefType "journal-article" @default.
- W3117378548 hasAuthorship W3117378548A5075075633 @default.
- W3117378548 hasAuthorship W3117378548A5087024415 @default.
- W3117378548 hasAuthorship W3117378548A5090157509 @default.
- W3117378548 hasConcept C10899652 @default.
- W3117378548 hasConcept C111919701 @default.
- W3117378548 hasConcept C116067010 @default.
- W3117378548 hasConcept C121332964 @default.
- W3117378548 hasConcept C128765274 @default.
- W3117378548 hasConcept C134306372 @default.
- W3117378548 hasConcept C147789679 @default.
- W3117378548 hasConcept C153294291 @default.
- W3117378548 hasConcept C154108245 @default.
- W3117378548 hasConcept C185592680 @default.
- W3117378548 hasConcept C192562407 @default.
- W3117378548 hasConcept C197336794 @default.
- W3117378548 hasConcept C24561367 @default.
- W3117378548 hasConcept C2780799671 @default.
- W3117378548 hasConcept C2989121073 @default.
- W3117378548 hasConcept C3018475017 @default.
- W3117378548 hasConcept C33923547 @default.
- W3117378548 hasConcept C38349280 @default.
- W3117378548 hasConcept C41008148 @default.
- W3117378548 hasConcept C50517652 @default.
- W3117378548 hasConcept C57879066 @default.
- W3117378548 hasConcept C8010536 @default.
- W3117378548 hasConcept C8171440 @default.
- W3117378548 hasConcept C97355855 @default.
- W3117378548 hasConceptScore W3117378548C10899652 @default.
- W3117378548 hasConceptScore W3117378548C111919701 @default.
- W3117378548 hasConceptScore W3117378548C116067010 @default.
- W3117378548 hasConceptScore W3117378548C121332964 @default.
- W3117378548 hasConceptScore W3117378548C128765274 @default.
- W3117378548 hasConceptScore W3117378548C134306372 @default.
- W3117378548 hasConceptScore W3117378548C147789679 @default.
- W3117378548 hasConceptScore W3117378548C153294291 @default.
- W3117378548 hasConceptScore W3117378548C154108245 @default.
- W3117378548 hasConceptScore W3117378548C185592680 @default.
- W3117378548 hasConceptScore W3117378548C192562407 @default.
- W3117378548 hasConceptScore W3117378548C197336794 @default.
- W3117378548 hasConceptScore W3117378548C24561367 @default.
- W3117378548 hasConceptScore W3117378548C2780799671 @default.
- W3117378548 hasConceptScore W3117378548C2989121073 @default.
- W3117378548 hasConceptScore W3117378548C3018475017 @default.