Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117433863> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3117433863 endingPage "12" @default.
- W3117433863 startingPage "1" @default.
- W3117433863 abstract "Classic embedded feature selection algorithms are often divided in two large groups: tree-based algorithms and LASSO variants. Both approaches are focused in different aspects: while the tree-based algorithms provide a clear explanation about which variables are being used to trigger a certain output, LASSO-like approaches sacrifice a detailed explanation in favor of increasing its accuracy. In this paper, we present a novel embedded feature selection algorithm, called End-to-End Feature Selection (E2E-FS), that aims to provide both accuracy and explainability in a clever way. Despite having non-convex regularization terms, our algorithm, similar to the LASSO approach, is solved with gradient descent techniques, introducing some restrictions that force the model to specifically select a maximum number of features that are going to be used subsequently by the classifier. Although these are hard restrictions, the experimental results obtained show that this algorithm can be used with any learning model that is trained using a gradient descent algorithm." @default.
- W3117433863 created "2021-01-05" @default.
- W3117433863 creator A5027801007 @default.
- W3117433863 creator A5042436168 @default.
- W3117433863 creator A5048207145 @default.
- W3117433863 date "2022-01-01" @default.
- W3117433863 modified "2023-10-03" @default.
- W3117433863 title "E2E-FS: An End-to-End Feature Selection Method for Neural Networks" @default.
- W3117433863 cites W1545302199 @default.
- W3117433863 cites W1983223005 @default.
- W3117433863 cites W1997313699 @default.
- W3117433863 cites W2056168656 @default.
- W3117433863 cites W2075894130 @default.
- W3117433863 cites W2082290707 @default.
- W3117433863 cites W2087684630 @default.
- W3117433863 cites W2089106993 @default.
- W3117433863 cites W2109363337 @default.
- W3117433863 cites W2112796928 @default.
- W3117433863 cites W2115044652 @default.
- W3117433863 cites W2135046866 @default.
- W3117433863 cites W2143426320 @default.
- W3117433863 cites W2166381300 @default.
- W3117433863 cites W2253609413 @default.
- W3117433863 cites W2256782633 @default.
- W3117433863 cites W2943560007 @default.
- W3117433863 cites W2962755847 @default.
- W3117433863 cites W2964137095 @default.
- W3117433863 cites W2965862774 @default.
- W3117433863 cites W3034712888 @default.
- W3117433863 cites W3107407793 @default.
- W3117433863 doi "https://doi.org/10.1109/tpami.2022.3228824" @default.
- W3117433863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37015369" @default.
- W3117433863 hasPublicationYear "2022" @default.
- W3117433863 type Work @default.
- W3117433863 sameAs 3117433863 @default.
- W3117433863 citedByCount "2" @default.
- W3117433863 countsByYear W31174338632023 @default.
- W3117433863 crossrefType "journal-article" @default.
- W3117433863 hasAuthorship W3117433863A5027801007 @default.
- W3117433863 hasAuthorship W3117433863A5042436168 @default.
- W3117433863 hasAuthorship W3117433863A5048207145 @default.
- W3117433863 hasBestOaLocation W31174338632 @default.
- W3117433863 hasConcept C11413529 @default.
- W3117433863 hasConcept C119857082 @default.
- W3117433863 hasConcept C136764020 @default.
- W3117433863 hasConcept C138885662 @default.
- W3117433863 hasConcept C148483581 @default.
- W3117433863 hasConcept C153180895 @default.
- W3117433863 hasConcept C153258448 @default.
- W3117433863 hasConcept C154945302 @default.
- W3117433863 hasConcept C2776135515 @default.
- W3117433863 hasConcept C2776401178 @default.
- W3117433863 hasConcept C37616216 @default.
- W3117433863 hasConcept C41008148 @default.
- W3117433863 hasConcept C41895202 @default.
- W3117433863 hasConcept C50644808 @default.
- W3117433863 hasConcept C74296488 @default.
- W3117433863 hasConcept C95623464 @default.
- W3117433863 hasConceptScore W3117433863C11413529 @default.
- W3117433863 hasConceptScore W3117433863C119857082 @default.
- W3117433863 hasConceptScore W3117433863C136764020 @default.
- W3117433863 hasConceptScore W3117433863C138885662 @default.
- W3117433863 hasConceptScore W3117433863C148483581 @default.
- W3117433863 hasConceptScore W3117433863C153180895 @default.
- W3117433863 hasConceptScore W3117433863C153258448 @default.
- W3117433863 hasConceptScore W3117433863C154945302 @default.
- W3117433863 hasConceptScore W3117433863C2776135515 @default.
- W3117433863 hasConceptScore W3117433863C2776401178 @default.
- W3117433863 hasConceptScore W3117433863C37616216 @default.
- W3117433863 hasConceptScore W3117433863C41008148 @default.
- W3117433863 hasConceptScore W3117433863C41895202 @default.
- W3117433863 hasConceptScore W3117433863C50644808 @default.
- W3117433863 hasConceptScore W3117433863C74296488 @default.
- W3117433863 hasConceptScore W3117433863C95623464 @default.
- W3117433863 hasLocation W31174338631 @default.
- W3117433863 hasLocation W31174338632 @default.
- W3117433863 hasLocation W31174338633 @default.
- W3117433863 hasOpenAccess W3117433863 @default.
- W3117433863 hasPrimaryLocation W31174338631 @default.
- W3117433863 hasRelatedWork W1529490543 @default.
- W3117433863 hasRelatedWork W2563096758 @default.
- W3117433863 hasRelatedWork W2605213558 @default.
- W3117433863 hasRelatedWork W3118634075 @default.
- W3117433863 hasRelatedWork W3200179079 @default.
- W3117433863 hasRelatedWork W4225307033 @default.
- W3117433863 hasRelatedWork W4287553285 @default.
- W3117433863 hasRelatedWork W4293525103 @default.
- W3117433863 hasRelatedWork W4386053843 @default.
- W3117433863 hasRelatedWork W3158004940 @default.
- W3117433863 isParatext "false" @default.
- W3117433863 isRetracted "false" @default.
- W3117433863 magId "3117433863" @default.
- W3117433863 workType "article" @default.