Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117472167> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3117472167 abstract "Non-dispersive infrared gas sensing is one of the best gas measurement method for air quality monitoring. However, sensors drift over time due to sensor aging and environmental factors, which makes calibration necessary. In this paper, we propose a hidden Markov model approach for sensor self-calibration, which builds on the physical model of gas sensors based on the Beer-Lambert law. We focus on the statistical dependency between a calibration coefficient and the temperature change. Supervised and unsupervised learning algorithms to learn the stochastic parameters of the hidden Markov model are derived and numerically tested. The true calibration coefficient at each time instant is estimated using the Viterbi algorithm. The numerical experiments using CO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> sensor data show excellent initial results which confirms that data-driven calibration of non-dispersive infrared gas sensors is possible. Meanwhile, the challenge in the practical design is to find an appropriate quantization scheme to keep the computation burden reasonable while achieving good performance." @default.
- W3117472167 created "2021-01-05" @default.
- W3117472167 creator A5049454006 @default.
- W3117472167 creator A5079492269 @default.
- W3117472167 date "2021-01-24" @default.
- W3117472167 modified "2023-10-03" @default.
- W3117472167 title "Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor" @default.
- W3117472167 cites W1598172960 @default.
- W3117472167 cites W1836111396 @default.
- W3117472167 cites W1996219216 @default.
- W3117472167 cites W1997773243 @default.
- W3117472167 cites W1999597418 @default.
- W3117472167 cites W2046809082 @default.
- W3117472167 cites W2061479062 @default.
- W3117472167 cites W2085765714 @default.
- W3117472167 cites W2096976414 @default.
- W3117472167 cites W2980213960 @default.
- W3117472167 cites W2995512905 @default.
- W3117472167 doi "https://doi.org/10.23919/eusipco47968.2020.9287334" @default.
- W3117472167 hasPublicationYear "2021" @default.
- W3117472167 type Work @default.
- W3117472167 sameAs 3117472167 @default.
- W3117472167 citedByCount "3" @default.
- W3117472167 countsByYear W31174721672020 @default.
- W3117472167 countsByYear W31174721672022 @default.
- W3117472167 countsByYear W31174721672023 @default.
- W3117472167 crossrefType "proceedings-article" @default.
- W3117472167 hasAuthorship W3117472167A5049454006 @default.
- W3117472167 hasAuthorship W3117472167A5079492269 @default.
- W3117472167 hasBestOaLocation W31174721672 @default.
- W3117472167 hasConcept C105795698 @default.
- W3117472167 hasConcept C11413529 @default.
- W3117472167 hasConcept C119857082 @default.
- W3117472167 hasConcept C154945302 @default.
- W3117472167 hasConcept C165838908 @default.
- W3117472167 hasConcept C23224414 @default.
- W3117472167 hasConcept C33923547 @default.
- W3117472167 hasConcept C41008148 @default.
- W3117472167 hasConcept C45374587 @default.
- W3117472167 hasConcept C60582962 @default.
- W3117472167 hasConcept C98763669 @default.
- W3117472167 hasConceptScore W3117472167C105795698 @default.
- W3117472167 hasConceptScore W3117472167C11413529 @default.
- W3117472167 hasConceptScore W3117472167C119857082 @default.
- W3117472167 hasConceptScore W3117472167C154945302 @default.
- W3117472167 hasConceptScore W3117472167C165838908 @default.
- W3117472167 hasConceptScore W3117472167C23224414 @default.
- W3117472167 hasConceptScore W3117472167C33923547 @default.
- W3117472167 hasConceptScore W3117472167C41008148 @default.
- W3117472167 hasConceptScore W3117472167C45374587 @default.
- W3117472167 hasConceptScore W3117472167C60582962 @default.
- W3117472167 hasConceptScore W3117472167C98763669 @default.
- W3117472167 hasLocation W31174721671 @default.
- W3117472167 hasLocation W31174721672 @default.
- W3117472167 hasLocation W31174721673 @default.
- W3117472167 hasOpenAccess W3117472167 @default.
- W3117472167 hasPrimaryLocation W31174721671 @default.
- W3117472167 hasRelatedWork W1969401149 @default.
- W3117472167 hasRelatedWork W2132275521 @default.
- W3117472167 hasRelatedWork W2151409566 @default.
- W3117472167 hasRelatedWork W2161328464 @default.
- W3117472167 hasRelatedWork W2295069874 @default.
- W3117472167 hasRelatedWork W2382132287 @default.
- W3117472167 hasRelatedWork W3129800369 @default.
- W3117472167 hasRelatedWork W3157920306 @default.
- W3117472167 hasRelatedWork W4294690686 @default.
- W3117472167 hasRelatedWork W4302561434 @default.
- W3117472167 isParatext "false" @default.
- W3117472167 isRetracted "false" @default.
- W3117472167 magId "3117472167" @default.
- W3117472167 workType "article" @default.