Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117542617> ?p ?o ?g. }
- W3117542617 endingPage "114539" @default.
- W3117542617 startingPage "114539" @default.
- W3117542617 abstract "Piecewise linear regression is a powerful and flexible regression technique where the dataset is divided into disjoint partitions and a separate regression is computed for each partition. Here, we consider the piecewise linear regression problem where the data partitioning is performed via a fixed number of break points on a predetermined dimension. We develop a column generation heuristic based on a set partitioning formulation of the problem and evaluate its prediction performance using a mixed integer programming formulation introduced earlier as a benchmark. Our results show that the proposed heuristic displays an efficient and robust performance, and also scales up smoothly as the dataset grows." @default.
- W3117542617 created "2021-01-05" @default.
- W3117542617 creator A5053671396 @default.
- W3117542617 creator A5084660580 @default.
- W3117542617 date "2021-06-01" @default.
- W3117542617 modified "2023-09-27" @default.
- W3117542617 title "A column generation based heuristic algorithm for piecewise linear regression" @default.
- W3117542617 cites W168241150 @default.
- W3117542617 cites W1857560888 @default.
- W3117542617 cites W1923610446 @default.
- W3117542617 cites W1984745425 @default.
- W3117542617 cites W2029272463 @default.
- W3117542617 cites W2040584367 @default.
- W3117542617 cites W2052902356 @default.
- W3117542617 cites W2076491140 @default.
- W3117542617 cites W2105280352 @default.
- W3117542617 cites W2136464549 @default.
- W3117542617 cites W2164092299 @default.
- W3117542617 cites W2185358546 @default.
- W3117542617 cites W2312680915 @default.
- W3117542617 cites W2586350499 @default.
- W3117542617 cites W2905104905 @default.
- W3117542617 cites W2906352526 @default.
- W3117542617 cites W2918765108 @default.
- W3117542617 cites W4244689695 @default.
- W3117542617 doi "https://doi.org/10.1016/j.eswa.2020.114539" @default.
- W3117542617 hasPublicationYear "2021" @default.
- W3117542617 type Work @default.
- W3117542617 sameAs 3117542617 @default.
- W3117542617 citedByCount "1" @default.
- W3117542617 countsByYear W31175426172022 @default.
- W3117542617 crossrefType "journal-article" @default.
- W3117542617 hasAuthorship W3117542617A5053671396 @default.
- W3117542617 hasAuthorship W3117542617A5084660580 @default.
- W3117542617 hasConcept C105795698 @default.
- W3117542617 hasConcept C11413529 @default.
- W3117542617 hasConcept C114614502 @default.
- W3117542617 hasConcept C118615104 @default.
- W3117542617 hasConcept C120068334 @default.
- W3117542617 hasConcept C126255220 @default.
- W3117542617 hasConcept C127705205 @default.
- W3117542617 hasConcept C13280743 @default.
- W3117542617 hasConcept C134306372 @default.
- W3117542617 hasConcept C164660894 @default.
- W3117542617 hasConcept C17095337 @default.
- W3117542617 hasConcept C173801870 @default.
- W3117542617 hasConcept C177264268 @default.
- W3117542617 hasConcept C185798385 @default.
- W3117542617 hasConcept C199360897 @default.
- W3117542617 hasConcept C205649164 @default.
- W3117542617 hasConcept C2524010 @default.
- W3117542617 hasConcept C33676613 @default.
- W3117542617 hasConcept C33923547 @default.
- W3117542617 hasConcept C35519122 @default.
- W3117542617 hasConcept C41008148 @default.
- W3117542617 hasConcept C41045048 @default.
- W3117542617 hasConcept C42812 @default.
- W3117542617 hasConcept C45340560 @default.
- W3117542617 hasConcept C48921125 @default.
- W3117542617 hasConcept C56086750 @default.
- W3117542617 hasConcept C83546350 @default.
- W3117542617 hasConceptScore W3117542617C105795698 @default.
- W3117542617 hasConceptScore W3117542617C11413529 @default.
- W3117542617 hasConceptScore W3117542617C114614502 @default.
- W3117542617 hasConceptScore W3117542617C118615104 @default.
- W3117542617 hasConceptScore W3117542617C120068334 @default.
- W3117542617 hasConceptScore W3117542617C126255220 @default.
- W3117542617 hasConceptScore W3117542617C127705205 @default.
- W3117542617 hasConceptScore W3117542617C13280743 @default.
- W3117542617 hasConceptScore W3117542617C134306372 @default.
- W3117542617 hasConceptScore W3117542617C164660894 @default.
- W3117542617 hasConceptScore W3117542617C17095337 @default.
- W3117542617 hasConceptScore W3117542617C173801870 @default.
- W3117542617 hasConceptScore W3117542617C177264268 @default.
- W3117542617 hasConceptScore W3117542617C185798385 @default.
- W3117542617 hasConceptScore W3117542617C199360897 @default.
- W3117542617 hasConceptScore W3117542617C205649164 @default.
- W3117542617 hasConceptScore W3117542617C2524010 @default.
- W3117542617 hasConceptScore W3117542617C33676613 @default.
- W3117542617 hasConceptScore W3117542617C33923547 @default.
- W3117542617 hasConceptScore W3117542617C35519122 @default.
- W3117542617 hasConceptScore W3117542617C41008148 @default.
- W3117542617 hasConceptScore W3117542617C41045048 @default.
- W3117542617 hasConceptScore W3117542617C42812 @default.
- W3117542617 hasConceptScore W3117542617C45340560 @default.
- W3117542617 hasConceptScore W3117542617C48921125 @default.
- W3117542617 hasConceptScore W3117542617C56086750 @default.
- W3117542617 hasConceptScore W3117542617C83546350 @default.
- W3117542617 hasLocation W31175426171 @default.
- W3117542617 hasOpenAccess W3117542617 @default.
- W3117542617 hasPrimaryLocation W31175426171 @default.
- W3117542617 hasRelatedWork W2012545914 @default.
- W3117542617 hasRelatedWork W2042934214 @default.
- W3117542617 hasRelatedWork W2059465490 @default.
- W3117542617 hasRelatedWork W2092519139 @default.
- W3117542617 hasRelatedWork W2754571953 @default.
- W3117542617 hasRelatedWork W2954800106 @default.
- W3117542617 hasRelatedWork W3117542617 @default.