Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117564914> ?p ?o ?g. }
- W3117564914 endingPage "72" @default.
- W3117564914 startingPage "72" @default.
- W3117564914 abstract "The general beta of the second kind distribution (GB2) is a flexible distribution which includes several relevant parametric families of distributions. This distribution has important applications in earnings and income distributions, finance and insurance. In this paper, several multivariate classes of the GB2 distribution are proposed. The different multivariate versions are based on two simple univariate representations of the GB2 distribution. The first type of multivariate distributions are constructed from a stochastic dependent representations defined in terms of gamma random variables. Using this representation and beginning by two particular multivariate GB2 distributions, multivariate Singh–Maddala and Dagum income distributions are presented and several properties are obtained. Then, a general multivariate GB2 distribution is introduced. The second type of multivariate distributions are based on a generalization of the distribution of the order statistics, which gives place to multivariate GB2 distribution with support above the diagonal. We discuss the role of these families in modeling bivariate income distributions. Finally, an empirical application is given, where we show that a multivariate GB2 distribution can be useful for modeling compound precipitation and wind events in the whole range." @default.
- W3117564914 created "2021-01-05" @default.
- W3117564914 creator A5024499530 @default.
- W3117564914 creator A5068231981 @default.
- W3117564914 creator A5078420198 @default.
- W3117564914 creator A5086403292 @default.
- W3117564914 date "2020-12-31" @default.
- W3117564914 modified "2023-10-11" @default.
- W3117564914 title "Multivariate Classes of GB2 Distributions with Applications" @default.
- W3117564914 cites W1508832021 @default.
- W3117564914 cites W1560498469 @default.
- W3117564914 cites W1600393878 @default.
- W3117564914 cites W1817683437 @default.
- W3117564914 cites W1969070728 @default.
- W3117564914 cites W1969577104 @default.
- W3117564914 cites W1969763686 @default.
- W3117564914 cites W1975262022 @default.
- W3117564914 cites W1979767026 @default.
- W3117564914 cites W1982208941 @default.
- W3117564914 cites W1982365059 @default.
- W3117564914 cites W1989838503 @default.
- W3117564914 cites W1991084569 @default.
- W3117564914 cites W1991852795 @default.
- W3117564914 cites W1992325611 @default.
- W3117564914 cites W1994229816 @default.
- W3117564914 cites W1994665315 @default.
- W3117564914 cites W1994813019 @default.
- W3117564914 cites W2003916383 @default.
- W3117564914 cites W2013002076 @default.
- W3117564914 cites W2031772585 @default.
- W3117564914 cites W2039872140 @default.
- W3117564914 cites W2041401704 @default.
- W3117564914 cites W2055218133 @default.
- W3117564914 cites W2060102473 @default.
- W3117564914 cites W2063882398 @default.
- W3117564914 cites W2064758206 @default.
- W3117564914 cites W2067089594 @default.
- W3117564914 cites W2071554716 @default.
- W3117564914 cites W2077602706 @default.
- W3117564914 cites W2087291229 @default.
- W3117564914 cites W2094055790 @default.
- W3117564914 cites W2102817136 @default.
- W3117564914 cites W2104969117 @default.
- W3117564914 cites W2116623494 @default.
- W3117564914 cites W2142635246 @default.
- W3117564914 cites W2155246844 @default.
- W3117564914 cites W2160150739 @default.
- W3117564914 cites W2588088234 @default.
- W3117564914 cites W2719044653 @default.
- W3117564914 cites W2756463568 @default.
- W3117564914 cites W2757845027 @default.
- W3117564914 cites W2774179644 @default.
- W3117564914 cites W2801971279 @default.
- W3117564914 cites W2808280098 @default.
- W3117564914 cites W2890708654 @default.
- W3117564914 cites W2902672118 @default.
- W3117564914 cites W2998698044 @default.
- W3117564914 cites W3122843801 @default.
- W3117564914 cites W3125098914 @default.
- W3117564914 cites W4376999555 @default.
- W3117564914 cites W4376999580 @default.
- W3117564914 cites W1987061729 @default.
- W3117564914 doi "https://doi.org/10.3390/math9010072" @default.
- W3117564914 hasPublicationYear "2020" @default.
- W3117564914 type Work @default.
- W3117564914 sameAs 3117564914 @default.
- W3117564914 citedByCount "6" @default.
- W3117564914 countsByYear W31175649142021 @default.
- W3117564914 countsByYear W31175649142022 @default.
- W3117564914 countsByYear W31175649142023 @default.
- W3117564914 crossrefType "journal-article" @default.
- W3117564914 hasAuthorship W3117564914A5024499530 @default.
- W3117564914 hasAuthorship W3117564914A5068231981 @default.
- W3117564914 hasAuthorship W3117564914A5078420198 @default.
- W3117564914 hasAuthorship W3117564914A5086403292 @default.
- W3117564914 hasBestOaLocation W31175649141 @default.
- W3117564914 hasConcept C105795698 @default.
- W3117564914 hasConcept C149782125 @default.
- W3117564914 hasConcept C161584116 @default.
- W3117564914 hasConcept C172713675 @default.
- W3117564914 hasConcept C177384507 @default.
- W3117564914 hasConcept C199163554 @default.
- W3117564914 hasConcept C33923547 @default.
- W3117564914 hasConcept C33962027 @default.
- W3117564914 hasConcept C73791607 @default.
- W3117564914 hasConcept C79708077 @default.
- W3117564914 hasConceptScore W3117564914C105795698 @default.
- W3117564914 hasConceptScore W3117564914C149782125 @default.
- W3117564914 hasConceptScore W3117564914C161584116 @default.
- W3117564914 hasConceptScore W3117564914C172713675 @default.
- W3117564914 hasConceptScore W3117564914C177384507 @default.
- W3117564914 hasConceptScore W3117564914C199163554 @default.
- W3117564914 hasConceptScore W3117564914C33923547 @default.
- W3117564914 hasConceptScore W3117564914C33962027 @default.
- W3117564914 hasConceptScore W3117564914C73791607 @default.
- W3117564914 hasConceptScore W3117564914C79708077 @default.
- W3117564914 hasFunder F4320322930 @default.
- W3117564914 hasIssue "1" @default.