Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117623204> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3117623204 abstract "Intrusion detection is one of the key technologies to ensure the security of cyberspace. In this paper, a detection model of Bi-LSTM, whose powerful serialization modeling function can discover the time series characteristics from network data, combined with machine learning algorithm K-means is proposed. We know that the data collected by network sensor or audit log has many attributes. In order to achieve a successful classification with low computational cost, it is important to employing the most relevant and discriminating features. How to extract useful information from those attributes to improve detection rate and reduce false detection are challenging. First, we group attributes according to the conditions on which they are collected or more generally, evenly. Then we cluster attributes of each group with K-means. So, we got the same number of hyper-features as the number of the groups. On the one side data reduction is significant and the data volume was greatly declined up to 85%. On the other side, the extracted features, also called hyper features, are more concentrated and informative than the low-level attributes. Detection rate on the high-level features is better than that on original attributes, both with traditional machine learning classification of C4.5 or our hybrid model. The intrusion detection rate of the powerful serialization model, Bi-LSTM based on K-means, is as high as 99.93%, the accuracy rate as high as 98.84%, and the false detection rate is 0. Moreover, experiments show that our Bi-LSTM model plus K-means works well with new attacks only appeared in test data too, which is meaningful for intrusion detection." @default.
- W3117623204 created "2021-01-05" @default.
- W3117623204 creator A5016683712 @default.
- W3117623204 creator A5023663254 @default.
- W3117623204 creator A5046454314 @default.
- W3117623204 creator A5048127669 @default.
- W3117623204 creator A5049161731 @default.
- W3117623204 creator A5079647672 @default.
- W3117623204 date "2020-09-18" @default.
- W3117623204 modified "2023-09-23" @default.
- W3117623204 title "Bi-LSTM: Finding Network Anomaly Based on Feature Grouping Clustering" @default.
- W3117623204 cites W2006112056 @default.
- W3117623204 cites W2064675550 @default.
- W3117623204 cites W2107878631 @default.
- W3117623204 cites W2150355110 @default.
- W3117623204 cites W2220974964 @default.
- W3117623204 cites W2599306383 @default.
- W3117623204 cites W2607252931 @default.
- W3117623204 cites W2783741806 @default.
- W3117623204 doi "https://doi.org/10.1145/3426826.3426843" @default.
- W3117623204 hasPublicationYear "2020" @default.
- W3117623204 type Work @default.
- W3117623204 sameAs 3117623204 @default.
- W3117623204 citedByCount "1" @default.
- W3117623204 countsByYear W31176232042023 @default.
- W3117623204 crossrefType "proceedings-article" @default.
- W3117623204 hasAuthorship W3117623204A5016683712 @default.
- W3117623204 hasAuthorship W3117623204A5023663254 @default.
- W3117623204 hasAuthorship W3117623204A5046454314 @default.
- W3117623204 hasAuthorship W3117623204A5048127669 @default.
- W3117623204 hasAuthorship W3117623204A5049161731 @default.
- W3117623204 hasAuthorship W3117623204A5079647672 @default.
- W3117623204 hasConcept C111919701 @default.
- W3117623204 hasConcept C119857082 @default.
- W3117623204 hasConcept C124101348 @default.
- W3117623204 hasConcept C153180895 @default.
- W3117623204 hasConcept C154945302 @default.
- W3117623204 hasConcept C26517878 @default.
- W3117623204 hasConcept C35525427 @default.
- W3117623204 hasConcept C38652104 @default.
- W3117623204 hasConcept C41008148 @default.
- W3117623204 hasConcept C52622490 @default.
- W3117623204 hasConcept C52723943 @default.
- W3117623204 hasConcept C73555534 @default.
- W3117623204 hasConcept C739882 @default.
- W3117623204 hasConceptScore W3117623204C111919701 @default.
- W3117623204 hasConceptScore W3117623204C119857082 @default.
- W3117623204 hasConceptScore W3117623204C124101348 @default.
- W3117623204 hasConceptScore W3117623204C153180895 @default.
- W3117623204 hasConceptScore W3117623204C154945302 @default.
- W3117623204 hasConceptScore W3117623204C26517878 @default.
- W3117623204 hasConceptScore W3117623204C35525427 @default.
- W3117623204 hasConceptScore W3117623204C38652104 @default.
- W3117623204 hasConceptScore W3117623204C41008148 @default.
- W3117623204 hasConceptScore W3117623204C52622490 @default.
- W3117623204 hasConceptScore W3117623204C52723943 @default.
- W3117623204 hasConceptScore W3117623204C73555534 @default.
- W3117623204 hasConceptScore W3117623204C739882 @default.
- W3117623204 hasLocation W31176232041 @default.
- W3117623204 hasOpenAccess W3117623204 @default.
- W3117623204 hasPrimaryLocation W31176232041 @default.
- W3117623204 hasRelatedWork W1706668261 @default.
- W3117623204 hasRelatedWork W2103330636 @default.
- W3117623204 hasRelatedWork W2149686398 @default.
- W3117623204 hasRelatedWork W2355809385 @default.
- W3117623204 hasRelatedWork W2379233030 @default.
- W3117623204 hasRelatedWork W2382568009 @default.
- W3117623204 hasRelatedWork W2390710607 @default.
- W3117623204 hasRelatedWork W2462592369 @default.
- W3117623204 hasRelatedWork W2754867770 @default.
- W3117623204 hasRelatedWork W62276109 @default.
- W3117623204 isParatext "false" @default.
- W3117623204 isRetracted "false" @default.
- W3117623204 magId "3117623204" @default.
- W3117623204 workType "article" @default.