Matches in SemOpenAlex for { <https://semopenalex.org/work/W3117982902> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3117982902 endingPage "84" @default.
- W3117982902 startingPage "75" @default.
- W3117982902 abstract "In the paper, the problem of face recognition in a video stream with augmented reality is considered. The current state of this problem is investigated. The general process of face recognition and the basic concepts of augmented reality have been studied. The analysis of modern approaches to solving the face recognition problem is carried out, the strengths and weaknesses of the methods used have been found. A search is carried out for a method invariant to scaling, scene changes, head turns, changes in lighting, accessories, and changes in emotions. An algorithm, architecture, and the soft-ware system that solves the problem of face recognition in a video stream with the elements of aug-mented reality have been developed. A histogram of oriented gradients (HOG) is chosen as the method for face detection; face recognition functionality is developed on the basis of the convolutional neural network architecture – ResNet34. Experimental studies are carried out, the system has been tested on both one and several faces simultaneously. Estimate methods of the recognition quality for the developed software system are determined – the plotting of ROC-curves that show the dependence of the number of false positives on the detection accuracy (true positive rate) and measuring AUC. AUC =0.95 has been achieved during recognition of one face, and AUC = 0.83 – during recognition of sev-eral faces (maximum 4). Statement of the problem. Investigation and analysis of existing approaches to building face-to-face recognition technology in augmented reality systems by analyzing models, methods and algorithms for human face recognition, identifying strengths and weaknesses of existing solutions, choosing the best combination of detection and recognition methods. Analysis of recent research and publications. Approaches have been proposed for the formation of biometric face image templates that can be used for biometric verification or face identification. However, all recent facial recognition results have been obtained through the use of deep convolutional neural networks. In the work of Yu. V. Visilter et al., a convolutional neural network with a hash forest (ZNMHL), based on a convolutional network with a hash layer, has been obtained. J. Betty et al. have investigated how different factors influence recognition quality. The purpose of the article is to prove the effectiveness of the proposed approach based on the histogram of directed gradients and convolutional neural network architecture ResNet34 for the problem of face recognition in a video stream in augmented reality systems. Presenting main material. The basic concepts of augmented reality are analyzed. The process of face recognition is described. The description of the software for the solution of the problem is given and mathematical model is developed. The algorithm of work of the program of face recognition program developed by authors is detailed. The architecture of face recognition system in augmented reality video stream is designed. Results. A software system designed to recognize human faces in augmented reality video streams has shown satisfactory results. The application correctly recognizes the face, available in the database, in different conditions of lighting, head rotation, with the presence of accessory ditches, the closure of some parts of the face, changes in emotions, etc., similarly for recognizing multiple faces at the same time. The system has been tested on 520 examples: 4 people separately and together in different combinations under different conditions of lighting, noise, interference, accessories, emotions. Conclusion. Applying a neural network to the ResNet architecture with appropriate settings for detecting and recognizing human faces in augmented reality video streams is a good choice – this method is invariant to scaling, scene changes, head turns, light changes, accessories, and emotion changes. The system is a platform for further development. In particular, it is planned to conduct experimental studies using other methods of face recognition in a video stream and to perform a comparative analysis of the results, as well as to create a more convenient graphical interface of the program and adaptation for the mobile version." @default.
- W3117982902 created "2021-01-05" @default.
- W3117982902 creator A5021886208 @default.
- W3117982902 creator A5050551332 @default.
- W3117982902 creator A5072336635 @default.
- W3117982902 creator A5073402813 @default.
- W3117982902 date "2020-11-23" @default.
- W3117982902 modified "2023-09-25" @default.
- W3117982902 title "РОЗРОБКА СИСТЕМИ РОЗПІЗНАВАННЯ ОБЛИЧЧЯ ЛЮДИНИ У ВІДЕОПОТОЦІ З ДОПОВНЕНОЮ РЕАЛЬНІСТЮ" @default.
- W3117982902 cites W1137351880 @default.
- W3117982902 cites W1468978781 @default.
- W3117982902 cites W1593163947 @default.
- W3117982902 cites W1974647172 @default.
- W3117982902 cites W2025996296 @default.
- W3117982902 cites W2114588272 @default.
- W3117982902 cites W2781688065 @default.
- W3117982902 cites W2802400127 @default.
- W3117982902 cites W2952309299 @default.
- W3117982902 doi "https://doi.org/10.24025/2306-4412.3.2020.200277" @default.
- W3117982902 hasPublicationYear "2020" @default.
- W3117982902 type Work @default.
- W3117982902 sameAs 3117982902 @default.
- W3117982902 citedByCount "0" @default.
- W3117982902 crossrefType "journal-article" @default.
- W3117982902 hasAuthorship W3117982902A5021886208 @default.
- W3117982902 hasAuthorship W3117982902A5050551332 @default.
- W3117982902 hasAuthorship W3117982902A5072336635 @default.
- W3117982902 hasAuthorship W3117982902A5073402813 @default.
- W3117982902 hasBestOaLocation W31179829021 @default.
- W3117982902 hasConcept C111919701 @default.
- W3117982902 hasConcept C115961682 @default.
- W3117982902 hasConcept C127413603 @default.
- W3117982902 hasConcept C144024400 @default.
- W3117982902 hasConcept C153180895 @default.
- W3117982902 hasConcept C153715457 @default.
- W3117982902 hasConcept C154945302 @default.
- W3117982902 hasConcept C202532154 @default.
- W3117982902 hasConcept C2779304628 @default.
- W3117982902 hasConcept C31510193 @default.
- W3117982902 hasConcept C31972630 @default.
- W3117982902 hasConcept C36289849 @default.
- W3117982902 hasConcept C41008148 @default.
- W3117982902 hasConcept C4641261 @default.
- W3117982902 hasConcept C53533937 @default.
- W3117982902 hasConcept C539667460 @default.
- W3117982902 hasConcept C64869954 @default.
- W3117982902 hasConcept C81363708 @default.
- W3117982902 hasConcept C88799230 @default.
- W3117982902 hasConcept C98045186 @default.
- W3117982902 hasConceptScore W3117982902C111919701 @default.
- W3117982902 hasConceptScore W3117982902C115961682 @default.
- W3117982902 hasConceptScore W3117982902C127413603 @default.
- W3117982902 hasConceptScore W3117982902C144024400 @default.
- W3117982902 hasConceptScore W3117982902C153180895 @default.
- W3117982902 hasConceptScore W3117982902C153715457 @default.
- W3117982902 hasConceptScore W3117982902C154945302 @default.
- W3117982902 hasConceptScore W3117982902C202532154 @default.
- W3117982902 hasConceptScore W3117982902C2779304628 @default.
- W3117982902 hasConceptScore W3117982902C31510193 @default.
- W3117982902 hasConceptScore W3117982902C31972630 @default.
- W3117982902 hasConceptScore W3117982902C36289849 @default.
- W3117982902 hasConceptScore W3117982902C41008148 @default.
- W3117982902 hasConceptScore W3117982902C4641261 @default.
- W3117982902 hasConceptScore W3117982902C53533937 @default.
- W3117982902 hasConceptScore W3117982902C539667460 @default.
- W3117982902 hasConceptScore W3117982902C64869954 @default.
- W3117982902 hasConceptScore W3117982902C81363708 @default.
- W3117982902 hasConceptScore W3117982902C88799230 @default.
- W3117982902 hasConceptScore W3117982902C98045186 @default.
- W3117982902 hasIssue "3" @default.
- W3117982902 hasLocation W31179829021 @default.
- W3117982902 hasLocation W31179829022 @default.
- W3117982902 hasOpenAccess W3117982902 @default.
- W3117982902 hasPrimaryLocation W31179829021 @default.
- W3117982902 hasRelatedWork W1560697087 @default.
- W3117982902 hasRelatedWork W1989039360 @default.
- W3117982902 hasRelatedWork W2003685048 @default.
- W3117982902 hasRelatedWork W2101773345 @default.
- W3117982902 hasRelatedWork W2146295394 @default.
- W3117982902 hasRelatedWork W2378532131 @default.
- W3117982902 hasRelatedWork W2532573070 @default.
- W3117982902 hasRelatedWork W2607108626 @default.
- W3117982902 hasRelatedWork W269042006 @default.
- W3117982902 hasRelatedWork W2905622784 @default.
- W3117982902 hasVolume "0" @default.
- W3117982902 isParatext "false" @default.
- W3117982902 isRetracted "false" @default.
- W3117982902 magId "3117982902" @default.
- W3117982902 workType "article" @default.