Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118022419> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3118022419 abstract "High risk driving scenarios are critical for the deployment of highly automated vehicles virtual test. In this study, we have proposed a deep learning method to identify high risk scenarios from the field operation test (FOT) data. The proposed method tries to overcome the shortcomings of existing relevant studies for their limited utilizations of video data and mainly based upon instant kinematic indicators, which has led to high false alarm rate issue. In this study, a combined video analysis method (Convolutional Neural Network, CNN) and temporal feature analysis model (Long Short-Term Memory, LSTM) was proposed. To be specific, we used CNN-LSTM and Convolutional Neural Networks and Long Short-Term Memory (Resnet-LSTM) to perform the classifications for high risk scenarios and non-conflict scenarios. The empirical analyses have been conducted using commercial vehicle FOT data. And the results showed that the overall model performance (AUC index) in the test set could reach 0.91 with 83% accuracy rate. Finally, the future works have been discussed from the aspects of further extractions of video data and investigations of LSTM modelling results." @default.
- W3118022419 created "2021-01-05" @default.
- W3118022419 creator A5017263150 @default.
- W3118022419 creator A5066027030 @default.
- W3118022419 creator A5009081657 @default.
- W3118022419 date "2020-09-20" @default.
- W3118022419 modified "2023-09-27" @default.
- W3118022419 title "Identifying High Risk Driving Scenarios Utilizing a CNN-LSTM Analysis Approach" @default.
- W3118022419 cites W1842501785 @default.
- W3118022419 cites W1966302942 @default.
- W3118022419 cites W2064675550 @default.
- W3118022419 cites W2085220992 @default.
- W3118022419 cites W2108598243 @default.
- W3118022419 cites W2520441278 @default.
- W3118022419 cites W2559767995 @default.
- W3118022419 cites W2597665707 @default.
- W3118022419 cites W2742058231 @default.
- W3118022419 cites W2793042952 @default.
- W3118022419 cites W2904545987 @default.
- W3118022419 cites W2928005813 @default.
- W3118022419 cites W2963657083 @default.
- W3118022419 cites W2964350391 @default.
- W3118022419 doi "https://doi.org/10.1109/itsc45102.2020.9294547" @default.
- W3118022419 hasPublicationYear "2020" @default.
- W3118022419 type Work @default.
- W3118022419 sameAs 3118022419 @default.
- W3118022419 citedByCount "1" @default.
- W3118022419 countsByYear W31180224192021 @default.
- W3118022419 crossrefType "proceedings-article" @default.
- W3118022419 hasAuthorship W3118022419A5009081657 @default.
- W3118022419 hasAuthorship W3118022419A5017263150 @default.
- W3118022419 hasAuthorship W3118022419A5066027030 @default.
- W3118022419 hasConcept C105339364 @default.
- W3118022419 hasConcept C108583219 @default.
- W3118022419 hasConcept C111919701 @default.
- W3118022419 hasConcept C119857082 @default.
- W3118022419 hasConcept C124101348 @default.
- W3118022419 hasConcept C138885662 @default.
- W3118022419 hasConcept C154945302 @default.
- W3118022419 hasConcept C169903167 @default.
- W3118022419 hasConcept C202444582 @default.
- W3118022419 hasConcept C2776401178 @default.
- W3118022419 hasConcept C33923547 @default.
- W3118022419 hasConcept C41008148 @default.
- W3118022419 hasConcept C41895202 @default.
- W3118022419 hasConcept C58489278 @default.
- W3118022419 hasConcept C67186912 @default.
- W3118022419 hasConcept C77088390 @default.
- W3118022419 hasConcept C81363708 @default.
- W3118022419 hasConcept C9652623 @default.
- W3118022419 hasConceptScore W3118022419C105339364 @default.
- W3118022419 hasConceptScore W3118022419C108583219 @default.
- W3118022419 hasConceptScore W3118022419C111919701 @default.
- W3118022419 hasConceptScore W3118022419C119857082 @default.
- W3118022419 hasConceptScore W3118022419C124101348 @default.
- W3118022419 hasConceptScore W3118022419C138885662 @default.
- W3118022419 hasConceptScore W3118022419C154945302 @default.
- W3118022419 hasConceptScore W3118022419C169903167 @default.
- W3118022419 hasConceptScore W3118022419C202444582 @default.
- W3118022419 hasConceptScore W3118022419C2776401178 @default.
- W3118022419 hasConceptScore W3118022419C33923547 @default.
- W3118022419 hasConceptScore W3118022419C41008148 @default.
- W3118022419 hasConceptScore W3118022419C41895202 @default.
- W3118022419 hasConceptScore W3118022419C58489278 @default.
- W3118022419 hasConceptScore W3118022419C67186912 @default.
- W3118022419 hasConceptScore W3118022419C77088390 @default.
- W3118022419 hasConceptScore W3118022419C81363708 @default.
- W3118022419 hasConceptScore W3118022419C9652623 @default.
- W3118022419 hasFunder F4320322449 @default.
- W3118022419 hasLocation W31180224191 @default.
- W3118022419 hasOpenAccess W3118022419 @default.
- W3118022419 hasPrimaryLocation W31180224191 @default.
- W3118022419 hasRelatedWork W2337926734 @default.
- W3118022419 hasRelatedWork W2963958939 @default.
- W3118022419 hasRelatedWork W2997155179 @default.
- W3118022419 hasRelatedWork W3099765033 @default.
- W3118022419 hasRelatedWork W3166467183 @default.
- W3118022419 hasRelatedWork W4311257506 @default.
- W3118022419 hasRelatedWork W4312831135 @default.
- W3118022419 hasRelatedWork W4319994054 @default.
- W3118022419 hasRelatedWork W4324137370 @default.
- W3118022419 hasRelatedWork W4366224123 @default.
- W3118022419 isParatext "false" @default.
- W3118022419 isRetracted "false" @default.
- W3118022419 magId "3118022419" @default.
- W3118022419 workType "article" @default.