Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118077410> ?p ?o ?g. }
- W3118077410 endingPage "105949" @default.
- W3118077410 startingPage "105949" @default.
- W3118077410 abstract "Transportation safety is highly correlated with driving behavior, especially human error playing a key role in a large portion of crashes. Modern instrumentation and computational resources allow for the monitorization of driver, vehicle, and roadway/environment to extract leading indicators of crashes from multi-dimensional data streams. To quantify variations that are beyond normal in driver behavior and vehicle kinematics, the concept of volatility is applied. The study measures driver-vehicle volatilities using the naturalistic driving data. By integrating and fusing multiple real-time streams of data, i.e., driver distraction, vehicular movements and kinematics, and instability in driving, this study aims to predict occurrence of safety critical events and generate appropriate feedback to drivers and surrounding vehicles. The naturalistic driving data is used which contains 7566 normal driving events, and 1315 severe events (i.e., crash and near-crash), vehicle kinematics, and driver behavior collected from more than 3500 drivers. In order to capture the local dependency and volatility in time-series data 1D-Convolutional Neural Network (1D-CNN), Long Short-Term Memory (LSTM), and 1DCNN-LSTM are applied. Vehicle kinematics, driving volatility, and impaired driving (in terms of distraction) are used as the input parameters. The results reveal that the 1DCNN-LSTM model provides the best performance, with 95.45% accuracy and prediction of 73.4% of crashes with a precision of 95.67%. Additional features are extracted with the CNN layers and temporal dependency between observations is addressed, which helps the network learn driving patterns and volatile behavior. The model can be used to monitor driving behavior in real-time and provide warnings and alerts to drivers in low-level automated vehicles, reducing their crash risk." @default.
- W3118077410 created "2021-01-05" @default.
- W3118077410 creator A5023447595 @default.
- W3118077410 creator A5039155779 @default.
- W3118077410 creator A5072730926 @default.
- W3118077410 date "2021-03-01" @default.
- W3118077410 modified "2023-10-16" @default.
- W3118077410 title "Safety critical event prediction through unified analysis of driver and vehicle volatilities: Application of deep learning methods" @default.
- W3118077410 cites W2004353783 @default.
- W3118077410 cites W2033110225 @default.
- W3118077410 cites W2043256010 @default.
- W3118077410 cites W2064675550 @default.
- W3118077410 cites W2080198345 @default.
- W3118077410 cites W2141769532 @default.
- W3118077410 cites W2155653793 @default.
- W3118077410 cites W2270470215 @default.
- W3118077410 cites W2312819030 @default.
- W3118077410 cites W2508167742 @default.
- W3118077410 cites W2517873857 @default.
- W3118077410 cites W2573587735 @default.
- W3118077410 cites W2597665707 @default.
- W3118077410 cites W2735400726 @default.
- W3118077410 cites W2770890411 @default.
- W3118077410 cites W2772724270 @default.
- W3118077410 cites W2797995801 @default.
- W3118077410 cites W2804879845 @default.
- W3118077410 cites W2883073525 @default.
- W3118077410 cites W2892075859 @default.
- W3118077410 cites W2904545987 @default.
- W3118077410 cites W2905239410 @default.
- W3118077410 cites W2912130719 @default.
- W3118077410 cites W2912831126 @default.
- W3118077410 cites W2921693380 @default.
- W3118077410 cites W2935760944 @default.
- W3118077410 cites W2936503027 @default.
- W3118077410 cites W2938312712 @default.
- W3118077410 cites W2942567858 @default.
- W3118077410 cites W2945113225 @default.
- W3118077410 cites W2947666609 @default.
- W3118077410 cites W2948212284 @default.
- W3118077410 cites W2952953619 @default.
- W3118077410 cites W2972984539 @default.
- W3118077410 cites W2981611875 @default.
- W3118077410 cites W2991137082 @default.
- W3118077410 cites W2999863666 @default.
- W3118077410 cites W3017019192 @default.
- W3118077410 cites W3035530851 @default.
- W3118077410 cites W3042783189 @default.
- W3118077410 cites W3084325691 @default.
- W3118077410 cites W3101242678 @default.
- W3118077410 cites W3111364346 @default.
- W3118077410 cites W3117761193 @default.
- W3118077410 doi "https://doi.org/10.1016/j.aap.2020.105949" @default.
- W3118077410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33385957" @default.
- W3118077410 hasPublicationYear "2021" @default.
- W3118077410 type Work @default.
- W3118077410 sameAs 3118077410 @default.
- W3118077410 citedByCount "32" @default.
- W3118077410 countsByYear W31180774102021 @default.
- W3118077410 countsByYear W31180774102022 @default.
- W3118077410 countsByYear W31180774102023 @default.
- W3118077410 crossrefType "journal-article" @default.
- W3118077410 hasAuthorship W3118077410A5023447595 @default.
- W3118077410 hasAuthorship W3118077410A5039155779 @default.
- W3118077410 hasAuthorship W3118077410A5072730926 @default.
- W3118077410 hasBestOaLocation W31180774101 @default.
- W3118077410 hasConcept C108583219 @default.
- W3118077410 hasConcept C119857082 @default.
- W3118077410 hasConcept C121332964 @default.
- W3118077410 hasConcept C127413603 @default.
- W3118077410 hasConcept C154945302 @default.
- W3118077410 hasConcept C169760540 @default.
- W3118077410 hasConcept C183469790 @default.
- W3118077410 hasConcept C199360897 @default.
- W3118077410 hasConcept C2776378700 @default.
- W3118077410 hasConcept C3017944768 @default.
- W3118077410 hasConcept C39920418 @default.
- W3118077410 hasConcept C41008148 @default.
- W3118077410 hasConcept C44154836 @default.
- W3118077410 hasConcept C71924100 @default.
- W3118077410 hasConcept C74650414 @default.
- W3118077410 hasConcept C79403827 @default.
- W3118077410 hasConcept C81363708 @default.
- W3118077410 hasConcept C86803240 @default.
- W3118077410 hasConcept C99454951 @default.
- W3118077410 hasConceptScore W3118077410C108583219 @default.
- W3118077410 hasConceptScore W3118077410C119857082 @default.
- W3118077410 hasConceptScore W3118077410C121332964 @default.
- W3118077410 hasConceptScore W3118077410C127413603 @default.
- W3118077410 hasConceptScore W3118077410C154945302 @default.
- W3118077410 hasConceptScore W3118077410C169760540 @default.
- W3118077410 hasConceptScore W3118077410C183469790 @default.
- W3118077410 hasConceptScore W3118077410C199360897 @default.
- W3118077410 hasConceptScore W3118077410C2776378700 @default.
- W3118077410 hasConceptScore W3118077410C3017944768 @default.
- W3118077410 hasConceptScore W3118077410C39920418 @default.
- W3118077410 hasConceptScore W3118077410C41008148 @default.
- W3118077410 hasConceptScore W3118077410C44154836 @default.