Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118147777> ?p ?o ?g. }
- W3118147777 endingPage "105080" @default.
- W3118147777 startingPage "105080" @default.
- W3118147777 abstract "We propose two ways to improve the forecasting accuracy of a focused time-delay neural network (FTDNN) that forecasts the term structure of crude oil futures. Our results show that a convergence based FTDNN makes consistently more accurate predictions than the fixed-epoch FTDNN in Barunik and Malinska (2016). Further, we suggest using basis splines (B-splines), instead of Nelson-Siegel functions, to fit the term structure curves. The empirical results show that the B-spline expansions lead to consistently better 1 and 3 months ahead predictions compared to the convergence based FTDNN. We also explore conditions under which the B-spline based approach may be better for longer-term predictions." @default.
- W3118147777 created "2021-01-05" @default.
- W3118147777 creator A5027009907 @default.
- W3118147777 creator A5038965808 @default.
- W3118147777 creator A5082984650 @default.
- W3118147777 creator A5087947210 @default.
- W3118147777 date "2021-02-01" @default.
- W3118147777 modified "2023-10-10" @default.
- W3118147777 title "Neural network prediction of crude oil futures using B-splines" @default.
- W3118147777 cites W1482923053 @default.
- W3118147777 cites W1507281218 @default.
- W3118147777 cites W2004610882 @default.
- W3118147777 cites W2029337176 @default.
- W3118147777 cites W2058106374 @default.
- W3118147777 cites W2058325222 @default.
- W3118147777 cites W2066326977 @default.
- W3118147777 cites W2077252204 @default.
- W3118147777 cites W2090774910 @default.
- W3118147777 cites W2098192078 @default.
- W3118147777 cites W2099954488 @default.
- W3118147777 cites W2100641458 @default.
- W3118147777 cites W2110603299 @default.
- W3118147777 cites W2113983529 @default.
- W3118147777 cites W2125536334 @default.
- W3118147777 cites W2139116473 @default.
- W3118147777 cites W2142893052 @default.
- W3118147777 cites W2148747400 @default.
- W3118147777 cites W2176566256 @default.
- W3118147777 cites W2590661630 @default.
- W3118147777 cites W2591268689 @default.
- W3118147777 cites W2609453614 @default.
- W3118147777 cites W2758620441 @default.
- W3118147777 cites W2766751685 @default.
- W3118147777 cites W2789331854 @default.
- W3118147777 cites W2792338922 @default.
- W3118147777 cites W2792836263 @default.
- W3118147777 cites W2793490331 @default.
- W3118147777 cites W2800138630 @default.
- W3118147777 cites W2800356887 @default.
- W3118147777 cites W2804919585 @default.
- W3118147777 cites W2810503069 @default.
- W3118147777 cites W2908175329 @default.
- W3118147777 cites W3008273182 @default.
- W3118147777 cites W3021299754 @default.
- W3118147777 cites W3039014617 @default.
- W3118147777 cites W3121346496 @default.
- W3118147777 cites W3122131252 @default.
- W3118147777 cites W3123625851 @default.
- W3118147777 cites W3124477952 @default.
- W3118147777 cites W3125065948 @default.
- W3118147777 cites W3125270793 @default.
- W3118147777 cites W4376849640 @default.
- W3118147777 doi "https://doi.org/10.1016/j.eneco.2020.105080" @default.
- W3118147777 hasPublicationYear "2021" @default.
- W3118147777 type Work @default.
- W3118147777 sameAs 3118147777 @default.
- W3118147777 citedByCount "6" @default.
- W3118147777 countsByYear W31181477772022 @default.
- W3118147777 countsByYear W31181477772023 @default.
- W3118147777 crossrefType "journal-article" @default.
- W3118147777 hasAuthorship W3118147777A5027009907 @default.
- W3118147777 hasAuthorship W3118147777A5038965808 @default.
- W3118147777 hasAuthorship W3118147777A5082984650 @default.
- W3118147777 hasAuthorship W3118147777A5087947210 @default.
- W3118147777 hasConcept C10390562 @default.
- W3118147777 hasConcept C106159729 @default.
- W3118147777 hasConcept C106306483 @default.
- W3118147777 hasConcept C121332964 @default.
- W3118147777 hasConcept C127313418 @default.
- W3118147777 hasConcept C127413603 @default.
- W3118147777 hasConcept C134306372 @default.
- W3118147777 hasConcept C149782125 @default.
- W3118147777 hasConcept C154945302 @default.
- W3118147777 hasConcept C15945459 @default.
- W3118147777 hasConcept C162324750 @default.
- W3118147777 hasConcept C2777303404 @default.
- W3118147777 hasConcept C28826006 @default.
- W3118147777 hasConcept C2987168347 @default.
- W3118147777 hasConcept C33923547 @default.
- W3118147777 hasConcept C41008148 @default.
- W3118147777 hasConcept C50522688 @default.
- W3118147777 hasConcept C50644808 @default.
- W3118147777 hasConcept C61797465 @default.
- W3118147777 hasConcept C62520636 @default.
- W3118147777 hasConcept C66938386 @default.
- W3118147777 hasConcept C78762247 @default.
- W3118147777 hasConceptScore W3118147777C10390562 @default.
- W3118147777 hasConceptScore W3118147777C106159729 @default.
- W3118147777 hasConceptScore W3118147777C106306483 @default.
- W3118147777 hasConceptScore W3118147777C121332964 @default.
- W3118147777 hasConceptScore W3118147777C127313418 @default.
- W3118147777 hasConceptScore W3118147777C127413603 @default.
- W3118147777 hasConceptScore W3118147777C134306372 @default.
- W3118147777 hasConceptScore W3118147777C149782125 @default.
- W3118147777 hasConceptScore W3118147777C154945302 @default.
- W3118147777 hasConceptScore W3118147777C15945459 @default.
- W3118147777 hasConceptScore W3118147777C162324750 @default.
- W3118147777 hasConceptScore W3118147777C2777303404 @default.