Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118166041> ?p ?o ?g. }
- W3118166041 endingPage "1491" @default.
- W3118166041 startingPage "1478" @default.
- W3118166041 abstract "Estimation of distribution algorithm (EDA) is an efficient population-based stochastic search technique. Since it was proposed, many attempts have been made to improve its performance in the context of nonlinear continuous optimization. However, the success of EDA depends on the accuracy of modeling, the effectiveness of sampling, and the ability of exploration. An effective EDA often needs to take some measures to adjust the model and to guide sampling. In this article, we propose a novel EDA which applies the idea of Kalman filtering to revise the modeling data and a learning strategy to improve sampling. The filtering scheme modifies the modeling data set using an estimation error matrix based on historic solution data. During the sampling process, the learning strategy determines the region to sample next based on the sampling outcomes so far, instead of completely random sampling. The proposed EDA also employs a multivariate probabilistic model based on copula function and can quickly reach the promising area in which the optimal solution is likely to be located. A collection of general benchmark functions are used to test the performance of the proposed algorithm. Computational experiments show that the EDA is effective. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —In many process industries, there exist black-box operation optimization problems and large-scale nonlinear optimization problems with variable coupling. For these problems, it is difficult to establish mechanism models between input and output. However, real-time data can be measured from the system through sensors. We can utilize this process information to optimize the system so as to attain the desired objective. In this article, we propose a novel estimation of distribution algorithm (EDA) which applies a filtering scheme to revise the modeling data and a learning strategy to improve sampling, which can solve the problems with the characteristics of nonlinearity, variable coupling, and large scale. Computational experiments show that the EDA is effective. In the future, the proposed algorithm can be applied to some practical optimization problems such as operation optimization in blast furnace, which is considered as a continuous production process with variable coupling. The algorithm has the potential to help optimizing the process control parameters." @default.
- W3118166041 created "2021-01-05" @default.
- W3118166041 creator A5001339474 @default.
- W3118166041 creator A5022256556 @default.
- W3118166041 creator A5042844003 @default.
- W3118166041 creator A5080304378 @default.
- W3118166041 date "2021-07-01" @default.
- W3118166041 modified "2023-09-27" @default.
- W3118166041 title "An Estimation of Distribution Algorithm With Filtering and Learning" @default.
- W3118166041 cites W1536736031 @default.
- W3118166041 cites W1558319294 @default.
- W3118166041 cites W1560047216 @default.
- W3118166041 cites W1692958259 @default.
- W3118166041 cites W1859950196 @default.
- W3118166041 cites W1994252941 @default.
- W3118166041 cites W1997600725 @default.
- W3118166041 cites W2015772998 @default.
- W3118166041 cites W2016114852 @default.
- W3118166041 cites W2053559291 @default.
- W3118166041 cites W2058278191 @default.
- W3118166041 cites W2065645426 @default.
- W3118166041 cites W2069816717 @default.
- W3118166041 cites W2078324766 @default.
- W3118166041 cites W2089425220 @default.
- W3118166041 cites W2094966176 @default.
- W3118166041 cites W2105934661 @default.
- W3118166041 cites W2117250519 @default.
- W3118166041 cites W2124120367 @default.
- W3118166041 cites W2134285040 @default.
- W3118166041 cites W2137340504 @default.
- W3118166041 cites W2138103158 @default.
- W3118166041 cites W2145407785 @default.
- W3118166041 cites W2153459327 @default.
- W3118166041 cites W2344134522 @default.
- W3118166041 cites W2414365832 @default.
- W3118166041 cites W2467729992 @default.
- W3118166041 cites W2537775084 @default.
- W3118166041 cites W2539206638 @default.
- W3118166041 cites W2745575657 @default.
- W3118166041 cites W2772158850 @default.
- W3118166041 cites W2886040690 @default.
- W3118166041 cites W2889002469 @default.
- W3118166041 cites W2890644749 @default.
- W3118166041 cites W2908550500 @default.
- W3118166041 cites W2963324733 @default.
- W3118166041 cites W2970883705 @default.
- W3118166041 cites W2981094887 @default.
- W3118166041 cites W3080409317 @default.
- W3118166041 cites W3146197186 @default.
- W3118166041 cites W4206483080 @default.
- W3118166041 cites W4234200911 @default.
- W3118166041 cites W4241861175 @default.
- W3118166041 doi "https://doi.org/10.1109/tase.2020.3019694" @default.
- W3118166041 hasPublicationYear "2021" @default.
- W3118166041 type Work @default.
- W3118166041 sameAs 3118166041 @default.
- W3118166041 citedByCount "6" @default.
- W3118166041 countsByYear W31181660412021 @default.
- W3118166041 countsByYear W31181660412022 @default.
- W3118166041 countsByYear W31181660412023 @default.
- W3118166041 crossrefType "journal-article" @default.
- W3118166041 hasAuthorship W3118166041A5001339474 @default.
- W3118166041 hasAuthorship W3118166041A5022256556 @default.
- W3118166041 hasAuthorship W3118166041A5042844003 @default.
- W3118166041 hasAuthorship W3118166041A5080304378 @default.
- W3118166041 hasBestOaLocation W31181660412 @default.
- W3118166041 hasConcept C106131492 @default.
- W3118166041 hasConcept C11413529 @default.
- W3118166041 hasConcept C119857082 @default.
- W3118166041 hasConcept C124101348 @default.
- W3118166041 hasConcept C126255220 @default.
- W3118166041 hasConcept C13280743 @default.
- W3118166041 hasConcept C137836250 @default.
- W3118166041 hasConcept C140779682 @default.
- W3118166041 hasConcept C154945302 @default.
- W3118166041 hasConcept C157286648 @default.
- W3118166041 hasConcept C162500139 @default.
- W3118166041 hasConcept C185798385 @default.
- W3118166041 hasConcept C205649164 @default.
- W3118166041 hasConcept C31972630 @default.
- W3118166041 hasConcept C33923547 @default.
- W3118166041 hasConcept C41008148 @default.
- W3118166041 hasConceptScore W3118166041C106131492 @default.
- W3118166041 hasConceptScore W3118166041C11413529 @default.
- W3118166041 hasConceptScore W3118166041C119857082 @default.
- W3118166041 hasConceptScore W3118166041C124101348 @default.
- W3118166041 hasConceptScore W3118166041C126255220 @default.
- W3118166041 hasConceptScore W3118166041C13280743 @default.
- W3118166041 hasConceptScore W3118166041C137836250 @default.
- W3118166041 hasConceptScore W3118166041C140779682 @default.
- W3118166041 hasConceptScore W3118166041C154945302 @default.
- W3118166041 hasConceptScore W3118166041C157286648 @default.
- W3118166041 hasConceptScore W3118166041C162500139 @default.
- W3118166041 hasConceptScore W3118166041C185798385 @default.
- W3118166041 hasConceptScore W3118166041C205649164 @default.
- W3118166041 hasConceptScore W3118166041C31972630 @default.
- W3118166041 hasConceptScore W3118166041C33923547 @default.
- W3118166041 hasConceptScore W3118166041C41008148 @default.