Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118226713> ?p ?o ?g. }
- W3118226713 abstract "Understanding how nano- or micro-scale structures and material properties can be optimally configured to attain specific functionalities remains a fundamental challenge. Photonic metasurfaces, for instance, can be spectrally tuned through material choice and structural geometry to achieve unique optical responses. However, existing numerical design methods require prior identification of specific material-structure combinations, or device classes, as the starting point for optimization. As such, a unified solution that simultaneously optimizes across materials and geometries has yet to be realized. To overcome these challenges, we present a global deep learning-based inverse design framework, where a conditional deep convolutional generative adversarial network is trained on colored images encoded with a range of material and structural parameters, including refractive index, plasma frequency, and geometric design. We demonstrate that, in response to target absorption spectra, the network can identify an effective metasurface in terms of its class, materials properties, and overall shape. Furthermore, the model can arrive at multiple design variants with distinct materials and structures that present nearly identical absorption spectra. Our proposed framework is thus an important step towards global photonics and materials design strategies that can identify combinations of device categories, material properties, and geometric parameters which algorithmically deliver a sought functionality." @default.
- W3118226713 created "2021-01-05" @default.
- W3118226713 creator A5017242038 @default.
- W3118226713 creator A5041185608 @default.
- W3118226713 creator A5041361461 @default.
- W3118226713 creator A5042031926 @default.
- W3118226713 creator A5065629614 @default.
- W3118226713 creator A5086282748 @default.
- W3118226713 creator A5089342501 @default.
- W3118226713 creator A5090753801 @default.
- W3118226713 creator A5090939011 @default.
- W3118226713 date "2021-07-17" @default.
- W3118226713 modified "2023-10-09" @default.
- W3118226713 title "Global Inverse Design across Multiple Photonic Structure Classes Using Generative Deep Learning" @default.
- W3118226713 cites W1494105879 @default.
- W3118226713 cites W1930389974 @default.
- W3118226713 cites W1968842631 @default.
- W3118226713 cites W1984119841 @default.
- W3118226713 cites W1993603656 @default.
- W3118226713 cites W2000316620 @default.
- W3118226713 cites W2030461171 @default.
- W3118226713 cites W2040785083 @default.
- W3118226713 cites W2058208824 @default.
- W3118226713 cites W2060228130 @default.
- W3118226713 cites W2077735967 @default.
- W3118226713 cites W2083317236 @default.
- W3118226713 cites W2335944238 @default.
- W3118226713 cites W2415475836 @default.
- W3118226713 cites W2611926691 @default.
- W3118226713 cites W2766162919 @default.
- W3118226713 cites W2784238146 @default.
- W3118226713 cites W2788686774 @default.
- W3118226713 cites W2803281408 @default.
- W3118226713 cites W2883583109 @default.
- W3118226713 cites W2889161617 @default.
- W3118226713 cites W2933945864 @default.
- W3118226713 cites W2949960465 @default.
- W3118226713 cites W2953641512 @default.
- W3118226713 cites W2956449284 @default.
- W3118226713 cites W2962797490 @default.
- W3118226713 cites W2974715397 @default.
- W3118226713 cites W2995086863 @default.
- W3118226713 cites W2996730279 @default.
- W3118226713 cites W3008967825 @default.
- W3118226713 cites W3011412093 @default.
- W3118226713 cites W3023907686 @default.
- W3118226713 cites W3034093793 @default.
- W3118226713 cites W3035776569 @default.
- W3118226713 cites W3083947857 @default.
- W3118226713 cites W3088687196 @default.
- W3118226713 cites W3092323705 @default.
- W3118226713 cites W3092835125 @default.
- W3118226713 cites W3100898792 @default.
- W3118226713 cites W3102673610 @default.
- W3118226713 cites W3105195789 @default.
- W3118226713 cites W3106259985 @default.
- W3118226713 cites W4251770033 @default.
- W3118226713 doi "https://doi.org/10.1002/adom.202100548" @default.
- W3118226713 hasPublicationYear "2021" @default.
- W3118226713 type Work @default.
- W3118226713 sameAs 3118226713 @default.
- W3118226713 citedByCount "23" @default.
- W3118226713 countsByYear W31182267132021 @default.
- W3118226713 countsByYear W31182267132022 @default.
- W3118226713 countsByYear W31182267132023 @default.
- W3118226713 crossrefType "journal-article" @default.
- W3118226713 hasAuthorship W3118226713A5017242038 @default.
- W3118226713 hasAuthorship W3118226713A5041185608 @default.
- W3118226713 hasAuthorship W3118226713A5041361461 @default.
- W3118226713 hasAuthorship W3118226713A5042031926 @default.
- W3118226713 hasAuthorship W3118226713A5065629614 @default.
- W3118226713 hasAuthorship W3118226713A5086282748 @default.
- W3118226713 hasAuthorship W3118226713A5089342501 @default.
- W3118226713 hasAuthorship W3118226713A5090753801 @default.
- W3118226713 hasAuthorship W3118226713A5090939011 @default.
- W3118226713 hasBestOaLocation W31182267132 @default.
- W3118226713 hasConcept C108583219 @default.
- W3118226713 hasConcept C110367647 @default.
- W3118226713 hasConcept C125287762 @default.
- W3118226713 hasConcept C136764020 @default.
- W3118226713 hasConcept C154945302 @default.
- W3118226713 hasConcept C159985019 @default.
- W3118226713 hasConcept C192562407 @default.
- W3118226713 hasConcept C207467116 @default.
- W3118226713 hasConcept C20788544 @default.
- W3118226713 hasConcept C2524010 @default.
- W3118226713 hasConcept C2777152284 @default.
- W3118226713 hasConcept C28719098 @default.
- W3118226713 hasConcept C33923547 @default.
- W3118226713 hasConcept C41008148 @default.
- W3118226713 hasConcept C49040817 @default.
- W3118226713 hasConceptScore W3118226713C108583219 @default.
- W3118226713 hasConceptScore W3118226713C110367647 @default.
- W3118226713 hasConceptScore W3118226713C125287762 @default.
- W3118226713 hasConceptScore W3118226713C136764020 @default.
- W3118226713 hasConceptScore W3118226713C154945302 @default.
- W3118226713 hasConceptScore W3118226713C159985019 @default.
- W3118226713 hasConceptScore W3118226713C192562407 @default.
- W3118226713 hasConceptScore W3118226713C207467116 @default.
- W3118226713 hasConceptScore W3118226713C20788544 @default.