Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118296095> ?p ?o ?g. }
- W3118296095 endingPage "102957" @default.
- W3118296095 startingPage "102957" @default.
- W3118296095 abstract "Driver trust has a great impact on the intention to accept, use, and adapt to automated vehicles. To date, driver trust in automated vehicle technologies has mostly been estimated by subjective data. Currently available objective measures of driver trust primarily rely on self-reported ratings as the ground truth, while the largely reported inconsistency between drivers’ self-reported trust levels and observed actual behavior suggests that drivers’ trust measures shall not solely rely on subjective reporting values. To address the issue, this study proposes an objective method to assess and predict driver trust in automated vehicle technologies, by using the transition probability matrix of drivers’ hand positions during automated vehicle system engagement. An on-road experiment was conducted on public roadways in real traffic. Data on use frequencies of advanced driver assistance systems (ADAS) and self-reported trust ratings were collected and combined in classifying driver trust levels: lower, medium, and higher based on the K-means clustering results. Drivers’ hand positions during ADAS engagement (i.e., during lane-departure warning and lane-keeping assist system uses) were then found closely associated with their trust levels. Differences of frequencies and transition probabilities for hand positions were further compared within and across the three trust groups. Results showed that drivers from the lower, medium, and higher trust groups were more likely to keep hands on the top, mid, and low positions of the wheel, respectively. Factors affecting driver trust in automated vehicle technologies were also explored through mixed model analyses. Middle-aged drivers placed more trust in ADAS than younger drivers, while female drivers exhibited greater trust than male drivers. The Random Forests algorithm was applied to build a prediction model for driver trust in automated vehicle technologies, by inputting the hand position transition probability matrix, age, gender, and ADAS types as independent variables. The overall prediction accuracy was approximately 80%. Findings in this study could contribute to the objective and real-time estimations of driver trust in automated vehicle technologies." @default.
- W3118296095 created "2021-01-18" @default.
- W3118296095 creator A5029389482 @default.
- W3118296095 creator A5041023938 @default.
- W3118296095 creator A5059538936 @default.
- W3118296095 creator A5071773009 @default.
- W3118296095 creator A5072519607 @default.
- W3118296095 date "2021-03-01" @default.
- W3118296095 modified "2023-10-16" @default.
- W3118296095 title "Measurement and prediction of driver trust in automated vehicle technologies: An application of hand position transition probability matrix" @default.
- W3118296095 cites W1577581905 @default.
- W3118296095 cites W1642805147 @default.
- W3118296095 cites W1809917043 @default.
- W3118296095 cites W1972997465 @default.
- W3118296095 cites W1978196405 @default.
- W3118296095 cites W1978465985 @default.
- W3118296095 cites W1985926185 @default.
- W3118296095 cites W1989870285 @default.
- W3118296095 cites W2001137413 @default.
- W3118296095 cites W2024337005 @default.
- W3118296095 cites W2045453819 @default.
- W3118296095 cites W2061341083 @default.
- W3118296095 cites W2078684842 @default.
- W3118296095 cites W2097411145 @default.
- W3118296095 cites W2118448219 @default.
- W3118296095 cites W2136625176 @default.
- W3118296095 cites W2158172993 @default.
- W3118296095 cites W2166307050 @default.
- W3118296095 cites W2181392280 @default.
- W3118296095 cites W2190448118 @default.
- W3118296095 cites W2198415016 @default.
- W3118296095 cites W2283097620 @default.
- W3118296095 cites W2286247980 @default.
- W3118296095 cites W2319663855 @default.
- W3118296095 cites W2327037637 @default.
- W3118296095 cites W2514801333 @default.
- W3118296095 cites W2516141107 @default.
- W3118296095 cites W2520329103 @default.
- W3118296095 cites W2554310451 @default.
- W3118296095 cites W2560274474 @default.
- W3118296095 cites W2593955227 @default.
- W3118296095 cites W2603946996 @default.
- W3118296095 cites W2620167551 @default.
- W3118296095 cites W2744943028 @default.
- W3118296095 cites W2765496083 @default.
- W3118296095 cites W2775450822 @default.
- W3118296095 cites W2778570143 @default.
- W3118296095 cites W2778725087 @default.
- W3118296095 cites W2792497263 @default.
- W3118296095 cites W2795099657 @default.
- W3118296095 cites W2804490918 @default.
- W3118296095 cites W2810305473 @default.
- W3118296095 cites W2883941536 @default.
- W3118296095 cites W2895922401 @default.
- W3118296095 cites W2902070640 @default.
- W3118296095 cites W2911964244 @default.
- W3118296095 cites W2920919283 @default.
- W3118296095 cites W2946112597 @default.
- W3118296095 cites W2949568807 @default.
- W3118296095 cites W2950242191 @default.
- W3118296095 cites W2960860747 @default.
- W3118296095 cites W3025199363 @default.
- W3118296095 cites W3033070131 @default.
- W3118296095 cites W3037923319 @default.
- W3118296095 cites W3085425023 @default.
- W3118296095 cites W4243342770 @default.
- W3118296095 cites W650480612 @default.
- W3118296095 cites W2061899564 @default.
- W3118296095 doi "https://doi.org/10.1016/j.trc.2020.102957" @default.
- W3118296095 hasPublicationYear "2021" @default.
- W3118296095 type Work @default.
- W3118296095 sameAs 3118296095 @default.
- W3118296095 citedByCount "23" @default.
- W3118296095 countsByYear W31182960952021 @default.
- W3118296095 countsByYear W31182960952022 @default.
- W3118296095 countsByYear W31182960952023 @default.
- W3118296095 crossrefType "journal-article" @default.
- W3118296095 hasAuthorship W3118296095A5029389482 @default.
- W3118296095 hasAuthorship W3118296095A5041023938 @default.
- W3118296095 hasAuthorship W3118296095A5059538936 @default.
- W3118296095 hasAuthorship W3118296095A5071773009 @default.
- W3118296095 hasAuthorship W3118296095A5072519607 @default.
- W3118296095 hasConcept C10138342 @default.
- W3118296095 hasConcept C144133560 @default.
- W3118296095 hasConcept C154945302 @default.
- W3118296095 hasConcept C17744445 @default.
- W3118296095 hasConcept C198082294 @default.
- W3118296095 hasConcept C2777825026 @default.
- W3118296095 hasConcept C38652104 @default.
- W3118296095 hasConcept C39549134 @default.
- W3118296095 hasConcept C41008148 @default.
- W3118296095 hasConcept C73555534 @default.
- W3118296095 hasConcept C87833898 @default.
- W3118296095 hasConceptScore W3118296095C10138342 @default.
- W3118296095 hasConceptScore W3118296095C144133560 @default.
- W3118296095 hasConceptScore W3118296095C154945302 @default.
- W3118296095 hasConceptScore W3118296095C17744445 @default.
- W3118296095 hasConceptScore W3118296095C198082294 @default.