Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118334057> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3118334057 abstract "Thermal imaging has substantially evolved, during the recent years, to be established as a complement, or even occasionally as an alternative to conventional visible light imaging, particularly for face analysis applications. Facial landmark detection is a crucial prerequisite for facial image processing. Given the upswing of deep learning based approaches, the performance of facial landmark detection has been significantly improved. However, this uprise is merely limited to visible spectrum based face analysis tasks, as there are only few research works on facial landmark detection in thermal spectrum. This limitation is mainly due to the lack of available thermal face databases provided with full facial landmark annotations. In this paper, we propose to tackle this data shortage by converting existing face databases, designed for facial landmark detection task, from visible to thermal spectrum that will share the same provided facial landmark annotations. Using the synthesized thermal databases along with the facial landmark annotations, two different models are trained using active appearance models and deep alignment network. Evaluating the models trained on synthesized thermal data on real thermal data, we obtained facial landmark detection accuracy of 94.59% when tested on low quality thermal data and 95.63% when tested on high quality thermal data with a detection threshold of 0.15×IOD." @default.
- W3118334057 created "2021-01-18" @default.
- W3118334057 creator A5037455064 @default.
- W3118334057 creator A5055361726 @default.
- W3118334057 date "2020-09-28" @default.
- W3118334057 modified "2023-10-16" @default.
- W3118334057 title "Facial landmark detection on thermal data via fully annotated visible-to-thermal data synthesis" @default.
- W3118334057 cites W103449527 @default.
- W3118334057 cites W1796263212 @default.
- W3118334057 cites W1977821862 @default.
- W3118334057 cites W1990937109 @default.
- W3118334057 cites W2035372623 @default.
- W3118334057 cites W2048924027 @default.
- W3118334057 cites W2058961190 @default.
- W3118334057 cites W2095906285 @default.
- W3118334057 cites W2157285372 @default.
- W3118334057 cites W2343983868 @default.
- W3118334057 cites W2417434257 @default.
- W3118334057 cites W2475287302 @default.
- W3118334057 cites W2799930024 @default.
- W3118334057 cites W2852792619 @default.
- W3118334057 cites W2887396754 @default.
- W3118334057 cites W2893441059 @default.
- W3118334057 cites W2902139631 @default.
- W3118334057 cites W2923773164 @default.
- W3118334057 cites W2941594394 @default.
- W3118334057 cites W2962819150 @default.
- W3118334057 cites W2962925415 @default.
- W3118334057 cites W2975232578 @default.
- W3118334057 cites W2099630469 @default.
- W3118334057 doi "https://doi.org/10.1109/ijcb48548.2020.9304854" @default.
- W3118334057 hasPublicationYear "2020" @default.
- W3118334057 type Work @default.
- W3118334057 sameAs 3118334057 @default.
- W3118334057 citedByCount "2" @default.
- W3118334057 countsByYear W31183340572021 @default.
- W3118334057 countsByYear W31183340572022 @default.
- W3118334057 crossrefType "proceedings-article" @default.
- W3118334057 hasAuthorship W3118334057A5037455064 @default.
- W3118334057 hasAuthorship W3118334057A5055361726 @default.
- W3118334057 hasBestOaLocation W31183340572 @default.
- W3118334057 hasConcept C153180895 @default.
- W3118334057 hasConcept C153294291 @default.
- W3118334057 hasConcept C154945302 @default.
- W3118334057 hasConcept C204530211 @default.
- W3118334057 hasConcept C205649164 @default.
- W3118334057 hasConcept C2780297707 @default.
- W3118334057 hasConcept C31972630 @default.
- W3118334057 hasConcept C41008148 @default.
- W3118334057 hasConceptScore W3118334057C153180895 @default.
- W3118334057 hasConceptScore W3118334057C153294291 @default.
- W3118334057 hasConceptScore W3118334057C154945302 @default.
- W3118334057 hasConceptScore W3118334057C204530211 @default.
- W3118334057 hasConceptScore W3118334057C205649164 @default.
- W3118334057 hasConceptScore W3118334057C2780297707 @default.
- W3118334057 hasConceptScore W3118334057C31972630 @default.
- W3118334057 hasConceptScore W3118334057C41008148 @default.
- W3118334057 hasFunder F4320321877 @default.
- W3118334057 hasLocation W31183340571 @default.
- W3118334057 hasLocation W31183340572 @default.
- W3118334057 hasLocation W31183340573 @default.
- W3118334057 hasOpenAccess W3118334057 @default.
- W3118334057 hasPrimaryLocation W31183340571 @default.
- W3118334057 hasRelatedWork W166366606 @default.
- W3118334057 hasRelatedWork W2098911910 @default.
- W3118334057 hasRelatedWork W2148343984 @default.
- W3118334057 hasRelatedWork W2352223314 @default.
- W3118334057 hasRelatedWork W2509104183 @default.
- W3118334057 hasRelatedWork W2509618504 @default.
- W3118334057 hasRelatedWork W4379875345 @default.
- W3118334057 hasRelatedWork W586143910 @default.
- W3118334057 hasRelatedWork W99616944 @default.
- W3118334057 hasRelatedWork W2156243485 @default.
- W3118334057 isParatext "false" @default.
- W3118334057 isRetracted "false" @default.
- W3118334057 magId "3118334057" @default.
- W3118334057 workType "article" @default.