Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118337407> ?p ?o ?g. }
- W3118337407 abstract "Customer churn prediction using data mining is an increasingly important concern in the highly saturated telecommunication sector. Albeit its popularity in research, few studies investigated the use of heterogeneous ensembles for this purpose. Therefore, this study evaluated and compared the performance of five grid-searched optimized base classifiers (logistic regression, decision trees, K-nearest neighbors, multilayer perceptron, and support vector machines) and their heterogeneous ensembles (stacking, grading, majority voting, weighted majority voting, and soft voting) on four different telecom datasets. The results indicate that there are significant improvements when using heterogeneous ensembles compared to single classifiers, with stacking being the most performant ensemble. The best meta-classifier for stacking was found to be a multilayer perceptron. Additionally, we identified that using probabilities as an input to the ensemble's meta-classifier, such as in soft voting and stacking variants, can increase their performance." @default.
- W3118337407 created "2021-01-18" @default.
- W3118337407 creator A5024546787 @default.
- W3118337407 creator A5028788112 @default.
- W3118337407 creator A5051833130 @default.
- W3118337407 creator A5076581659 @default.
- W3118337407 date "2020-12-01" @default.
- W3118337407 modified "2023-09-27" @default.
- W3118337407 title "Benchmarking Stacking Against Other Heterogeneous Ensembles in Telecom Churn Prediction" @default.
- W3118337407 cites W1492088121 @default.
- W3118337407 cites W1510688672 @default.
- W3118337407 cites W1549436606 @default.
- W3118337407 cites W1565377632 @default.
- W3118337407 cites W1572404648 @default.
- W3118337407 cites W1592353143 @default.
- W3118337407 cites W1595709980 @default.
- W3118337407 cites W1763644767 @default.
- W3118337407 cites W1985876643 @default.
- W3118337407 cites W1990322717 @default.
- W3118337407 cites W2006153161 @default.
- W3118337407 cites W2023294425 @default.
- W3118337407 cites W2048755952 @default.
- W3118337407 cites W2058285684 @default.
- W3118337407 cites W2067594023 @default.
- W3118337407 cites W2074780813 @default.
- W3118337407 cites W2093866047 @default.
- W3118337407 cites W2097998348 @default.
- W3118337407 cites W2123504579 @default.
- W3118337407 cites W2147119434 @default.
- W3118337407 cites W2159105921 @default.
- W3118337407 cites W2167917621 @default.
- W3118337407 cites W2188778440 @default.
- W3118337407 cites W2404620755 @default.
- W3118337407 cites W2541364103 @default.
- W3118337407 cites W2570430069 @default.
- W3118337407 cites W2577871063 @default.
- W3118337407 cites W2758113456 @default.
- W3118337407 cites W2883966112 @default.
- W3118337407 cites W3010280706 @default.
- W3118337407 cites W3100344990 @default.
- W3118337407 cites W605727707 @default.
- W3118337407 doi "https://doi.org/10.1109/ssci47803.2020.9308188" @default.
- W3118337407 hasPublicationYear "2020" @default.
- W3118337407 type Work @default.
- W3118337407 sameAs 3118337407 @default.
- W3118337407 citedByCount "0" @default.
- W3118337407 crossrefType "proceedings-article" @default.
- W3118337407 hasAuthorship W3118337407A5024546787 @default.
- W3118337407 hasAuthorship W3118337407A5028788112 @default.
- W3118337407 hasAuthorship W3118337407A5051833130 @default.
- W3118337407 hasAuthorship W3118337407A5076581659 @default.
- W3118337407 hasConcept C119857082 @default.
- W3118337407 hasConcept C121332964 @default.
- W3118337407 hasConcept C12267149 @default.
- W3118337407 hasConcept C124101348 @default.
- W3118337407 hasConcept C144133560 @default.
- W3118337407 hasConcept C153180895 @default.
- W3118337407 hasConcept C153668964 @default.
- W3118337407 hasConcept C154945302 @default.
- W3118337407 hasConcept C162853370 @default.
- W3118337407 hasConcept C17744445 @default.
- W3118337407 hasConcept C179717631 @default.
- W3118337407 hasConcept C199539241 @default.
- W3118337407 hasConcept C33347731 @default.
- W3118337407 hasConcept C41008148 @default.
- W3118337407 hasConcept C46141821 @default.
- W3118337407 hasConcept C50644808 @default.
- W3118337407 hasConcept C520049643 @default.
- W3118337407 hasConcept C84525736 @default.
- W3118337407 hasConcept C86251818 @default.
- W3118337407 hasConcept C94625758 @default.
- W3118337407 hasConcept C95623464 @default.
- W3118337407 hasConceptScore W3118337407C119857082 @default.
- W3118337407 hasConceptScore W3118337407C121332964 @default.
- W3118337407 hasConceptScore W3118337407C12267149 @default.
- W3118337407 hasConceptScore W3118337407C124101348 @default.
- W3118337407 hasConceptScore W3118337407C144133560 @default.
- W3118337407 hasConceptScore W3118337407C153180895 @default.
- W3118337407 hasConceptScore W3118337407C153668964 @default.
- W3118337407 hasConceptScore W3118337407C154945302 @default.
- W3118337407 hasConceptScore W3118337407C162853370 @default.
- W3118337407 hasConceptScore W3118337407C17744445 @default.
- W3118337407 hasConceptScore W3118337407C179717631 @default.
- W3118337407 hasConceptScore W3118337407C199539241 @default.
- W3118337407 hasConceptScore W3118337407C33347731 @default.
- W3118337407 hasConceptScore W3118337407C41008148 @default.
- W3118337407 hasConceptScore W3118337407C46141821 @default.
- W3118337407 hasConceptScore W3118337407C50644808 @default.
- W3118337407 hasConceptScore W3118337407C520049643 @default.
- W3118337407 hasConceptScore W3118337407C84525736 @default.
- W3118337407 hasConceptScore W3118337407C86251818 @default.
- W3118337407 hasConceptScore W3118337407C94625758 @default.
- W3118337407 hasConceptScore W3118337407C95623464 @default.
- W3118337407 hasLocation W31183374071 @default.
- W3118337407 hasOpenAccess W3118337407 @default.
- W3118337407 hasPrimaryLocation W31183374071 @default.
- W3118337407 hasRelatedWork W2041636156 @default.
- W3118337407 hasRelatedWork W2084779923 @default.
- W3118337407 hasRelatedWork W2120008580 @default.
- W3118337407 hasRelatedWork W2160451891 @default.