Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118343457> ?p ?o ?g. }
- W3118343457 abstract "Abstract Aims There is currently no universally accepted measure for population-based surveillance of mood and anxiety disorders. As such, the use of multiple linked measures could provide a more accurate estimate of population prevalence. Our primary objective was to apply Bayesian methods to two commonly employed population measures of mood and anxiety disorders to make inferences regarding the population prevalence and measurement properties of a combined measure. Methods We used data from the 2012 Canadian Community Health Survey – Mental Health linked to health administrative databases in Ontario, Canada. Structured interview diagnoses were obtained from the survey, and health administrative diagnoses were identified using a standardised algorithm. These two prevalence estimates, in addition to data on the concordance between these measures and prior estimates of their psychometric properties, were used to inform our combined estimate. The marginal posterior densities of all parameters were estimated using Hamiltonian Monte Carlo (HMC), a Markov Chain Monte Carlo technique. Summaries of posterior distributions, including the means and 95% equally tailed posterior credible intervals, were used for interpretation of the results. Results The combined prevalence mean was 8.6%, with a credible interval of 6.8–10.6%. This combined estimate sits between Bayesian-derived prevalence estimates from administrative data-derived diagnoses (mean = 7.4%) and the survey-derived diagnoses (mean = 13.9%). The results of our sensitivity analysis suggest that varying the specificity of the survey-derived measure has an appreciable impact on the combined posterior prevalence estimate. Our combined posterior prevalence estimate remained stable when varying other prior information. We detected no problematic HMC behaviour, and our posterior predictive checks suggest that our model can reliably recreate our data. Conclusions Accurate population-based estimates of disease are the cornerstone of health service planning and resource allocation. As a greater number of linked population data sources become available, so too does the opportunity for researchers to fully capitalise on the data. The true population prevalence of mood and anxiety disorders may reside between estimates obtained from survey data and health administrative data. We have demonstrated how the use of Bayesian approaches may provide a more informed and accurate estimate of mood and anxiety disorders in the population. This work provides a blueprint for future population-based estimates of disease using linked health data." @default.
- W3118343457 created "2021-01-18" @default.
- W3118343457 creator A5019224959 @default.
- W3118343457 creator A5043901963 @default.
- W3118343457 creator A5051709827 @default.
- W3118343457 creator A5068386964 @default.
- W3118343457 creator A5076339342 @default.
- W3118343457 creator A5080494753 @default.
- W3118343457 date "2021-01-01" @default.
- W3118343457 modified "2023-09-25" @default.
- W3118343457 title "A Bayesian approach to estimating the population prevalence of mood and anxiety disorders using multiple measures" @default.
- W3118343457 cites W1544131626 @default.
- W3118343457 cites W1601815945 @default.
- W3118343457 cites W1968464969 @default.
- W3118343457 cites W2005250049 @default.
- W3118343457 cites W2021054271 @default.
- W3118343457 cites W2033377029 @default.
- W3118343457 cites W2061904763 @default.
- W3118343457 cites W2063333104 @default.
- W3118343457 cites W2073661387 @default.
- W3118343457 cites W2097572674 @default.
- W3118343457 cites W2107750653 @default.
- W3118343457 cites W2112539435 @default.
- W3118343457 cites W2143121954 @default.
- W3118343457 cites W2159774315 @default.
- W3118343457 cites W2160187477 @default.
- W3118343457 cites W2165947961 @default.
- W3118343457 cites W2167044045 @default.
- W3118343457 cites W2276068440 @default.
- W3118343457 cites W2577537660 @default.
- W3118343457 cites W2614669943 @default.
- W3118343457 cites W2912654919 @default.
- W3118343457 cites W2941590297 @default.
- W3118343457 cites W2977568864 @default.
- W3118343457 cites W2997167317 @default.
- W3118343457 cites W4248681815 @default.
- W3118343457 doi "https://doi.org/10.1017/s2045796020001080" @default.
- W3118343457 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8057492" @default.
- W3118343457 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33413716" @default.
- W3118343457 hasPublicationYear "2021" @default.
- W3118343457 type Work @default.
- W3118343457 sameAs 3118343457 @default.
- W3118343457 citedByCount "6" @default.
- W3118343457 countsByYear W31183434572021 @default.
- W3118343457 countsByYear W31183434572022 @default.
- W3118343457 countsByYear W31183434572023 @default.
- W3118343457 crossrefType "journal-article" @default.
- W3118343457 hasAuthorship W3118343457A5019224959 @default.
- W3118343457 hasAuthorship W3118343457A5043901963 @default.
- W3118343457 hasAuthorship W3118343457A5051709827 @default.
- W3118343457 hasAuthorship W3118343457A5068386964 @default.
- W3118343457 hasAuthorship W3118343457A5076339342 @default.
- W3118343457 hasAuthorship W3118343457A5080494753 @default.
- W3118343457 hasBestOaLocation W31183434571 @default.
- W3118343457 hasConcept C105795698 @default.
- W3118343457 hasConcept C107673813 @default.
- W3118343457 hasConcept C111350023 @default.
- W3118343457 hasConcept C118552586 @default.
- W3118343457 hasConcept C121117317 @default.
- W3118343457 hasConcept C126322002 @default.
- W3118343457 hasConcept C129963666 @default.
- W3118343457 hasConcept C134362201 @default.
- W3118343457 hasConcept C142724271 @default.
- W3118343457 hasConcept C144024400 @default.
- W3118343457 hasConcept C149923435 @default.
- W3118343457 hasConcept C160798450 @default.
- W3118343457 hasConcept C185429906 @default.
- W3118343457 hasConcept C207201462 @default.
- W3118343457 hasConcept C2908647359 @default.
- W3118343457 hasConcept C33923547 @default.
- W3118343457 hasConcept C534262118 @default.
- W3118343457 hasConcept C558461103 @default.
- W3118343457 hasConcept C57830394 @default.
- W3118343457 hasConcept C71924100 @default.
- W3118343457 hasConcept C99454951 @default.
- W3118343457 hasConceptScore W3118343457C105795698 @default.
- W3118343457 hasConceptScore W3118343457C107673813 @default.
- W3118343457 hasConceptScore W3118343457C111350023 @default.
- W3118343457 hasConceptScore W3118343457C118552586 @default.
- W3118343457 hasConceptScore W3118343457C121117317 @default.
- W3118343457 hasConceptScore W3118343457C126322002 @default.
- W3118343457 hasConceptScore W3118343457C129963666 @default.
- W3118343457 hasConceptScore W3118343457C134362201 @default.
- W3118343457 hasConceptScore W3118343457C142724271 @default.
- W3118343457 hasConceptScore W3118343457C144024400 @default.
- W3118343457 hasConceptScore W3118343457C149923435 @default.
- W3118343457 hasConceptScore W3118343457C160798450 @default.
- W3118343457 hasConceptScore W3118343457C185429906 @default.
- W3118343457 hasConceptScore W3118343457C207201462 @default.
- W3118343457 hasConceptScore W3118343457C2908647359 @default.
- W3118343457 hasConceptScore W3118343457C33923547 @default.
- W3118343457 hasConceptScore W3118343457C534262118 @default.
- W3118343457 hasConceptScore W3118343457C558461103 @default.
- W3118343457 hasConceptScore W3118343457C57830394 @default.
- W3118343457 hasConceptScore W3118343457C71924100 @default.
- W3118343457 hasConceptScore W3118343457C99454951 @default.
- W3118343457 hasLocation W31183434571 @default.
- W3118343457 hasLocation W31183434572 @default.
- W3118343457 hasOpenAccess W3118343457 @default.
- W3118343457 hasPrimaryLocation W31183434571 @default.