Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118375750> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3118375750 endingPage "413" @default.
- W3118375750 startingPage "413" @default.
- W3118375750 abstract "This paper develops a reliable deep-learning framework to extract latent features from spatial properties and investigates adaptive surrogate estimation to sequester CO2 into heterogeneous deep saline aquifers. Our deep-learning architecture includes a deep convolutional autoencoder (DCAE) and a fully-convolutional network to not only reduce computational costs but also to extract dimensionality-reduced features to conserve spatial characteristics. The workflow integrates two different spatial properties within a single convolutional system, and it also achieves accurate reconstruction performance. This approach significantly reduces the number of parameters to 4.3% of the original number required, e.g., the number of three-dimensional spatial properties needed decreases from 44,460 to 1920. The successful dimensionality reduction is accomplished by the DCAE system regarding all inputs as image channels from the initial stage of learning using the fully-convolutional network instead of fully-connected layers. The DCAE reconstructs spatial parameters such as permeability and porosity while conserving their statistical values, i.e., their mean and standard deviation, achieving R-squared values of over 0.972 with a mean absolute percentage error of their mean values of less than 1.79%. The adaptive surrogate model using the latent features extracted by DCAE, well operations, and modeling parameters is able to accurately estimate CO2 sequestration performances. The model shows R-squared values of over 0.892 for testing data not used in training and validation. The DCAE-based surrogate estimation exploits the reliable integration of various spatial data within the fully-convolutional network and allows us to evaluate flow behavior occurring in a subsurface domain." @default.
- W3118375750 created "2021-01-18" @default.
- W3118375750 creator A5010706909 @default.
- W3118375750 creator A5014682527 @default.
- W3118375750 creator A5080535313 @default.
- W3118375750 creator A5088326995 @default.
- W3118375750 date "2021-01-13" @default.
- W3118375750 modified "2023-10-15" @default.
- W3118375750 title "Adaptive Surrogate Estimation with Spatial Features Using a Deep Convolutional Autoencoder for CO2 Geological Sequestration" @default.
- W3118375750 cites W1523493493 @default.
- W3118375750 cites W1996324466 @default.
- W3118375750 cites W2016210396 @default.
- W3118375750 cites W2076063813 @default.
- W3118375750 cites W2082005552 @default.
- W3118375750 cites W2122538988 @default.
- W3118375750 cites W2154751158 @default.
- W3118375750 cites W2296609147 @default.
- W3118375750 cites W2784733489 @default.
- W3118375750 cites W2793669142 @default.
- W3118375750 cites W2809254203 @default.
- W3118375750 cites W2810417102 @default.
- W3118375750 cites W2894026361 @default.
- W3118375750 cites W2950337752 @default.
- W3118375750 cites W2963162215 @default.
- W3118375750 cites W2965326702 @default.
- W3118375750 cites W2987426193 @default.
- W3118375750 cites W2995440822 @default.
- W3118375750 cites W3007368846 @default.
- W3118375750 cites W3016309349 @default.
- W3118375750 cites W3027568991 @default.
- W3118375750 cites W3029050805 @default.
- W3118375750 cites W3036139134 @default.
- W3118375750 cites W3084154032 @default.
- W3118375750 cites W925690405 @default.
- W3118375750 doi "https://doi.org/10.3390/en14020413" @default.
- W3118375750 hasPublicationYear "2021" @default.
- W3118375750 type Work @default.
- W3118375750 sameAs 3118375750 @default.
- W3118375750 citedByCount "5" @default.
- W3118375750 countsByYear W31183757502021 @default.
- W3118375750 countsByYear W31183757502022 @default.
- W3118375750 countsByYear W31183757502023 @default.
- W3118375750 crossrefType "journal-article" @default.
- W3118375750 hasAuthorship W3118375750A5010706909 @default.
- W3118375750 hasAuthorship W3118375750A5014682527 @default.
- W3118375750 hasAuthorship W3118375750A5080535313 @default.
- W3118375750 hasAuthorship W3118375750A5088326995 @default.
- W3118375750 hasBestOaLocation W31183757501 @default.
- W3118375750 hasConcept C101738243 @default.
- W3118375750 hasConcept C108583219 @default.
- W3118375750 hasConcept C150060386 @default.
- W3118375750 hasConcept C153180895 @default.
- W3118375750 hasConcept C154945302 @default.
- W3118375750 hasConcept C41008148 @default.
- W3118375750 hasConcept C70518039 @default.
- W3118375750 hasConcept C76155785 @default.
- W3118375750 hasConcept C81363708 @default.
- W3118375750 hasConceptScore W3118375750C101738243 @default.
- W3118375750 hasConceptScore W3118375750C108583219 @default.
- W3118375750 hasConceptScore W3118375750C150060386 @default.
- W3118375750 hasConceptScore W3118375750C153180895 @default.
- W3118375750 hasConceptScore W3118375750C154945302 @default.
- W3118375750 hasConceptScore W3118375750C41008148 @default.
- W3118375750 hasConceptScore W3118375750C70518039 @default.
- W3118375750 hasConceptScore W3118375750C76155785 @default.
- W3118375750 hasConceptScore W3118375750C81363708 @default.
- W3118375750 hasFunder F4320322120 @default.
- W3118375750 hasFunder F4320335199 @default.
- W3118375750 hasIssue "2" @default.
- W3118375750 hasLocation W31183757501 @default.
- W3118375750 hasLocation W31183757502 @default.
- W3118375750 hasLocation W31183757503 @default.
- W3118375750 hasOpenAccess W3118375750 @default.
- W3118375750 hasPrimaryLocation W31183757501 @default.
- W3118375750 hasRelatedWork W2002563186 @default.
- W3118375750 hasRelatedWork W2355395139 @default.
- W3118375750 hasRelatedWork W2669956259 @default.
- W3118375750 hasRelatedWork W3193565141 @default.
- W3118375750 hasRelatedWork W4226493464 @default.
- W3118375750 hasRelatedWork W4249005693 @default.
- W3118375750 hasRelatedWork W4285596704 @default.
- W3118375750 hasRelatedWork W4310873165 @default.
- W3118375750 hasRelatedWork W4312417841 @default.
- W3118375750 hasRelatedWork W4365790226 @default.
- W3118375750 hasVolume "14" @default.
- W3118375750 isParatext "false" @default.
- W3118375750 isRetracted "false" @default.
- W3118375750 magId "3118375750" @default.
- W3118375750 workType "article" @default.