Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118404085> ?p ?o ?g. }
- W3118404085 endingPage "e0245177" @default.
- W3118404085 startingPage "e0245177" @default.
- W3118404085 abstract "Motivation Recurrent neural networks (RNN) are powerful frameworks to model medical time series records. Recent studies showed improved accuracy of predicting future medical events (e.g., readmission, mortality) by leveraging large amount of high-dimensional data. However, very few studies have explored the ability of RNN in predicting long-term trajectories of recurrent events, which is more informative than predicting one single event in directing medical intervention. Methods In this study, we focus on heart failure (HF) which is the leading cause of death among cardiovascular diseases. We present a novel RNN framework named Deep Heart-failure Trajectory Model (DHTM) for modelling the long-term trajectories of recurrent HF. DHTM auto-regressively predicts the future HF onsets of each patient and uses the predicted HF as input to predict the HF event at the next time point. Furthermore, we propose an augmented DHTM named DHTM+C (where “C” stands for co-morbidities), which jointly predicts both the HF and a set of acute co-morbidities diagnoses. To efficiently train the DHTM+C model, we devised a novel RNN architecture to model disease progression implicated in the co-morbidities. Results Our deep learning models confers higher prediction accuracy for both the next-step HF prediction and the HF trajectory prediction compared to the baseline non-neural network models and the baseline RNN model. Compared to DHTM, DHTM+C is able to output higher probability of HF for high-risk patients, even in cases where it is only given less than 2 years of data to predict over 5 years of trajectory. We illustrated multiple non-trivial real patient examples of complex HF trajectories, indicating a promising path for creating highly accurate and scalable longitudinal deep learning models for modeling the chronic disease." @default.
- W3118404085 created "2021-01-18" @default.
- W3118404085 creator A5007656836 @default.
- W3118404085 creator A5032536633 @default.
- W3118404085 creator A5042421322 @default.
- W3118404085 creator A5044367029 @default.
- W3118404085 creator A5048233009 @default.
- W3118404085 creator A5058826626 @default.
- W3118404085 creator A5063213559 @default.
- W3118404085 creator A5090266285 @default.
- W3118404085 date "2021-01-06" @default.
- W3118404085 modified "2023-10-01" @default.
- W3118404085 title "Recurrent disease progression networks for modelling risk trajectory of heart failure" @default.
- W3118404085 cites W1498436455 @default.
- W3118404085 cites W1961002235 @default.
- W3118404085 cites W2034293464 @default.
- W3118404085 cites W2040244694 @default.
- W3118404085 cites W2040339824 @default.
- W3118404085 cites W2046996951 @default.
- W3118404085 cites W2047520486 @default.
- W3118404085 cites W2064675550 @default.
- W3118404085 cites W2128145072 @default.
- W3118404085 cites W2129997990 @default.
- W3118404085 cites W2157331557 @default.
- W3118404085 cites W2194775991 @default.
- W3118404085 cites W2601031783 @default.
- W3118404085 cites W2781808713 @default.
- W3118404085 cites W2796547658 @default.
- W3118404085 cites W2808897169 @default.
- W3118404085 cites W2915269621 @default.
- W3118404085 cites W2922594471 @default.
- W3118404085 cites W2963351448 @default.
- W3118404085 cites W2965717552 @default.
- W3118404085 cites W3035986399 @default.
- W3118404085 cites W3048413376 @default.
- W3118404085 cites W3098949126 @default.
- W3118404085 doi "https://doi.org/10.1371/journal.pone.0245177" @default.
- W3118404085 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7787457" @default.
- W3118404085 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33406155" @default.
- W3118404085 hasPublicationYear "2021" @default.
- W3118404085 type Work @default.
- W3118404085 sameAs 3118404085 @default.
- W3118404085 citedByCount "10" @default.
- W3118404085 countsByYear W31184040852021 @default.
- W3118404085 countsByYear W31184040852022 @default.
- W3118404085 countsByYear W31184040852023 @default.
- W3118404085 crossrefType "journal-article" @default.
- W3118404085 hasAuthorship W3118404085A5007656836 @default.
- W3118404085 hasAuthorship W3118404085A5032536633 @default.
- W3118404085 hasAuthorship W3118404085A5042421322 @default.
- W3118404085 hasAuthorship W3118404085A5044367029 @default.
- W3118404085 hasAuthorship W3118404085A5048233009 @default.
- W3118404085 hasAuthorship W3118404085A5058826626 @default.
- W3118404085 hasAuthorship W3118404085A5063213559 @default.
- W3118404085 hasAuthorship W3118404085A5090266285 @default.
- W3118404085 hasBestOaLocation W31184040851 @default.
- W3118404085 hasConcept C107038049 @default.
- W3118404085 hasConcept C108583219 @default.
- W3118404085 hasConcept C111368507 @default.
- W3118404085 hasConcept C119857082 @default.
- W3118404085 hasConcept C121332964 @default.
- W3118404085 hasConcept C12725497 @default.
- W3118404085 hasConcept C127313418 @default.
- W3118404085 hasConcept C1276947 @default.
- W3118404085 hasConcept C13662910 @default.
- W3118404085 hasConcept C138885662 @default.
- W3118404085 hasConcept C142724271 @default.
- W3118404085 hasConcept C147168706 @default.
- W3118404085 hasConcept C154945302 @default.
- W3118404085 hasConcept C164705383 @default.
- W3118404085 hasConcept C2778198053 @default.
- W3118404085 hasConcept C2779466056 @default.
- W3118404085 hasConcept C2779662365 @default.
- W3118404085 hasConcept C41008148 @default.
- W3118404085 hasConcept C50644808 @default.
- W3118404085 hasConcept C534262118 @default.
- W3118404085 hasConcept C62520636 @default.
- W3118404085 hasConcept C71924100 @default.
- W3118404085 hasConceptScore W3118404085C107038049 @default.
- W3118404085 hasConceptScore W3118404085C108583219 @default.
- W3118404085 hasConceptScore W3118404085C111368507 @default.
- W3118404085 hasConceptScore W3118404085C119857082 @default.
- W3118404085 hasConceptScore W3118404085C121332964 @default.
- W3118404085 hasConceptScore W3118404085C12725497 @default.
- W3118404085 hasConceptScore W3118404085C127313418 @default.
- W3118404085 hasConceptScore W3118404085C1276947 @default.
- W3118404085 hasConceptScore W3118404085C13662910 @default.
- W3118404085 hasConceptScore W3118404085C138885662 @default.
- W3118404085 hasConceptScore W3118404085C142724271 @default.
- W3118404085 hasConceptScore W3118404085C147168706 @default.
- W3118404085 hasConceptScore W3118404085C154945302 @default.
- W3118404085 hasConceptScore W3118404085C164705383 @default.
- W3118404085 hasConceptScore W3118404085C2778198053 @default.
- W3118404085 hasConceptScore W3118404085C2779466056 @default.
- W3118404085 hasConceptScore W3118404085C2779662365 @default.
- W3118404085 hasConceptScore W3118404085C41008148 @default.
- W3118404085 hasConceptScore W3118404085C50644808 @default.
- W3118404085 hasConceptScore W3118404085C534262118 @default.