Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118404269> ?p ?o ?g. }
- W3118404269 abstract "Smart trains nowadays are equipped with sensors that generate an abundance of data during operation. Such data may, directly or indirectly, reflect the health state of the trains. Thus, it is of interest to analyze these data in a timely manner, preferably on-the-fly as they are being generated, to make maintenance operations more proactive and efficient. This paper provides a brief overview of predictive maintenance and stream learning, with the primary goal of leveraging stream learning in order to enhance maintenance operations in the railway sector. We justify the applicability and promising benefits of stream learning via the example of a real-world railway dataset of the train doors." @default.
- W3118404269 created "2021-01-18" @default.
- W3118404269 creator A5077334287 @default.
- W3118404269 creator A5080970505 @default.
- W3118404269 creator A5084229566 @default.
- W3118404269 creator A5087402555 @default.
- W3118404269 date "2020-01-01" @default.
- W3118404269 modified "2023-10-03" @default.
- W3118404269 title "Challenges of Stream Learning for Predictive Maintenance in the Railway Sector" @default.
- W3118404269 cites W1971040995 @default.
- W3118404269 cites W1981433115 @default.
- W3118404269 cites W1982275278 @default.
- W3118404269 cites W1999393241 @default.
- W3118404269 cites W2018964383 @default.
- W3118404269 cites W2025237660 @default.
- W3118404269 cites W2036831021 @default.
- W3118404269 cites W2037838959 @default.
- W3118404269 cites W2068714596 @default.
- W3118404269 cites W2077807157 @default.
- W3118404269 cites W2091608060 @default.
- W3118404269 cites W2092335550 @default.
- W3118404269 cites W2099302642 @default.
- W3118404269 cites W2099349620 @default.
- W3118404269 cites W2099419573 @default.
- W3118404269 cites W2106944661 @default.
- W3118404269 cites W2110787940 @default.
- W3118404269 cites W2117487426 @default.
- W3118404269 cites W2124952481 @default.
- W3118404269 cites W2143991132 @default.
- W3118404269 cites W2147664181 @default.
- W3118404269 cites W2170936641 @default.
- W3118404269 cites W2516566105 @default.
- W3118404269 cites W2620661538 @default.
- W3118404269 cites W2743189459 @default.
- W3118404269 cites W2743579215 @default.
- W3118404269 cites W2766440025 @default.
- W3118404269 cites W2771505108 @default.
- W3118404269 cites W2788033804 @default.
- W3118404269 cites W2791384746 @default.
- W3118404269 cites W2800110846 @default.
- W3118404269 cites W2884123408 @default.
- W3118404269 cites W2885862103 @default.
- W3118404269 cites W2898563009 @default.
- W3118404269 cites W2972137370 @default.
- W3118404269 cites W4256386068 @default.
- W3118404269 cites W94034037 @default.
- W3118404269 doi "https://doi.org/10.1007/978-3-030-66770-2_2" @default.
- W3118404269 hasPublicationYear "2020" @default.
- W3118404269 type Work @default.
- W3118404269 sameAs 3118404269 @default.
- W3118404269 citedByCount "1" @default.
- W3118404269 countsByYear W31184042692021 @default.
- W3118404269 crossrefType "book-chapter" @default.
- W3118404269 hasAuthorship W3118404269A5077334287 @default.
- W3118404269 hasAuthorship W3118404269A5080970505 @default.
- W3118404269 hasAuthorship W3118404269A5084229566 @default.
- W3118404269 hasAuthorship W3118404269A5087402555 @default.
- W3118404269 hasConcept C10138342 @default.
- W3118404269 hasConcept C111919701 @default.
- W3118404269 hasConcept C125209513 @default.
- W3118404269 hasConcept C127413603 @default.
- W3118404269 hasConcept C144133560 @default.
- W3118404269 hasConcept C182306322 @default.
- W3118404269 hasConcept C190839683 @default.
- W3118404269 hasConcept C200601418 @default.
- W3118404269 hasConcept C205649164 @default.
- W3118404269 hasConcept C2778484313 @default.
- W3118404269 hasConcept C2781020372 @default.
- W3118404269 hasConcept C41008148 @default.
- W3118404269 hasConcept C58640448 @default.
- W3118404269 hasConcept C70452415 @default.
- W3118404269 hasConcept C76155785 @default.
- W3118404269 hasConceptScore W3118404269C10138342 @default.
- W3118404269 hasConceptScore W3118404269C111919701 @default.
- W3118404269 hasConceptScore W3118404269C125209513 @default.
- W3118404269 hasConceptScore W3118404269C127413603 @default.
- W3118404269 hasConceptScore W3118404269C144133560 @default.
- W3118404269 hasConceptScore W3118404269C182306322 @default.
- W3118404269 hasConceptScore W3118404269C190839683 @default.
- W3118404269 hasConceptScore W3118404269C200601418 @default.
- W3118404269 hasConceptScore W3118404269C205649164 @default.
- W3118404269 hasConceptScore W3118404269C2778484313 @default.
- W3118404269 hasConceptScore W3118404269C2781020372 @default.
- W3118404269 hasConceptScore W3118404269C41008148 @default.
- W3118404269 hasConceptScore W3118404269C58640448 @default.
- W3118404269 hasConceptScore W3118404269C70452415 @default.
- W3118404269 hasConceptScore W3118404269C76155785 @default.
- W3118404269 hasLocation W31184042691 @default.
- W3118404269 hasOpenAccess W3118404269 @default.
- W3118404269 hasPrimaryLocation W31184042691 @default.
- W3118404269 hasRelatedWork W11458674 @default.
- W3118404269 hasRelatedWork W12348781 @default.
- W3118404269 hasRelatedWork W12664119 @default.
- W3118404269 hasRelatedWork W12758745 @default.
- W3118404269 hasRelatedWork W1461950 @default.
- W3118404269 hasRelatedWork W2275048 @default.
- W3118404269 hasRelatedWork W2704657 @default.
- W3118404269 hasRelatedWork W5684879 @default.
- W3118404269 hasRelatedWork W6413478 @default.
- W3118404269 hasRelatedWork W8815242 @default.