Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118443404> ?p ?o ?g. }
- W3118443404 endingPage "125871" @default.
- W3118443404 startingPage "125871" @default.
- W3118443404 abstract "Clean water is becoming an increasingly scarce resource, and its availability is already compromised in many cities. Several techniques for increasing urban water availability are under consideration, but how their life cycle environmental impacts compare amongst one other remain largely unknown. For cities in developing countries, which are more susceptive to water shortages, this is particularly true. Furthermore, to directly compare these technologies, they must be evaluated using the same methodological framework. This paper compares, for the first time, the life cycle environmental impacts of the following three techniques: i) seawater desalination by reverse osmosis (SWRO); ii) indirect potable wastewater reuse (IPR) through an upflow anaerobic sludge blanket digestion reactor, oxidation ditch, ozonation, and managed aquifer recharge; and iii) rainwater harvesting (RWH) to substitute drinking water from the local distribution network. These techniques were evaluated in the Brazilian southern city of Florianópolis. Life cycle assessment (LCA) was used to calculate 15 environmental impact categories with the ReCiPe methodology. Variations in electricity consumption according to technical developments, effluent quality, and pumping efficiency were taken into consideration with parametric analysis. Furthermore, a sensitivity analysis was carried out regarding the direct emissions of methane and nitrous oxide during IPR, and the electricity mix. SWRO indicates the highest results for 12 out of the 15 impact categories, and IPR indicates the lowest values in nine categories. Electricity consumption is the main contributor to most impact categories during SWRO and IPR. Out of six categories (including climate change and human toxicity), RWH is the preferable option whilst comparatively also presenting the worst results for water depletion and marine eutrophication, with glass fibre produced for storage tanks being the main contributor. In the climate change potential category, for instance, SWRO, IPR and RWH have mean results of 751, 998, and 591 kg CO2 eq./1000 m3, respectively. However, the sensitivity analysis showed that if direct emissions of CH4 and N2O in IPR are low, then the IPR technique will have better results than the SWRO method, resulting in 710 kg CO2 eq./1000 m3. Additionally, the country electricity mix was found to be highly influential in the environmental impacts, especially for SWRO and IPR. The results obtained from this research will inform stakeholders, particularly those in developing countries, about possibilities of adopting new techniques for increasing water supplies, without comprising the environmental sustainability of these systems." @default.
- W3118443404 created "2021-01-18" @default.
- W3118443404 creator A5010148350 @default.
- W3118443404 creator A5019569216 @default.
- W3118443404 creator A5024742436 @default.
- W3118443404 creator A5043693597 @default.
- W3118443404 date "2021-03-01" @default.
- W3118443404 modified "2023-10-07" @default.
- W3118443404 title "Comparative life cycle assessment of three alternative techniques for increasing potable water supply in cities in the Global South" @default.
- W3118443404 cites W1254606854 @default.
- W3118443404 cites W1847260599 @default.
- W3118443404 cites W1963685802 @default.
- W3118443404 cites W1970465458 @default.
- W3118443404 cites W1973832455 @default.
- W3118443404 cites W1984262846 @default.
- W3118443404 cites W1987953032 @default.
- W3118443404 cites W2000011592 @default.
- W3118443404 cites W2003113400 @default.
- W3118443404 cites W2009026762 @default.
- W3118443404 cites W2009092558 @default.
- W3118443404 cites W2009524095 @default.
- W3118443404 cites W2011743547 @default.
- W3118443404 cites W2011969741 @default.
- W3118443404 cites W2012000579 @default.
- W3118443404 cites W2024949477 @default.
- W3118443404 cites W2030960237 @default.
- W3118443404 cites W2040564925 @default.
- W3118443404 cites W2047501833 @default.
- W3118443404 cites W2047525735 @default.
- W3118443404 cites W2048490497 @default.
- W3118443404 cites W2049849097 @default.
- W3118443404 cites W2050721826 @default.
- W3118443404 cites W2067790274 @default.
- W3118443404 cites W2078036637 @default.
- W3118443404 cites W2079747486 @default.
- W3118443404 cites W2083457664 @default.
- W3118443404 cites W2085772939 @default.
- W3118443404 cites W2091671766 @default.
- W3118443404 cites W2107464365 @default.
- W3118443404 cites W2140547867 @default.
- W3118443404 cites W2148345493 @default.
- W3118443404 cites W2150133147 @default.
- W3118443404 cites W2155304622 @default.
- W3118443404 cites W2165367475 @default.
- W3118443404 cites W2172651312 @default.
- W3118443404 cites W2209691242 @default.
- W3118443404 cites W2213890520 @default.
- W3118443404 cites W2232410478 @default.
- W3118443404 cites W2315165640 @default.
- W3118443404 cites W2340972631 @default.
- W3118443404 cites W2404035502 @default.
- W3118443404 cites W2469820602 @default.
- W3118443404 cites W2471966297 @default.
- W3118443404 cites W2512591276 @default.
- W3118443404 cites W2517503945 @default.
- W3118443404 cites W2531602433 @default.
- W3118443404 cites W2537424594 @default.
- W3118443404 cites W2560379110 @default.
- W3118443404 cites W2560946359 @default.
- W3118443404 cites W2586368028 @default.
- W3118443404 cites W2586933343 @default.
- W3118443404 cites W2592655768 @default.
- W3118443404 cites W2603820670 @default.
- W3118443404 cites W2744756529 @default.
- W3118443404 cites W2755471892 @default.
- W3118443404 cites W2759094949 @default.
- W3118443404 cites W2765332850 @default.
- W3118443404 cites W2768104931 @default.
- W3118443404 cites W2770174341 @default.
- W3118443404 cites W2770820715 @default.
- W3118443404 cites W2772075677 @default.
- W3118443404 cites W2775329668 @default.
- W3118443404 cites W2787917565 @default.
- W3118443404 cites W2792295015 @default.
- W3118443404 cites W2794803459 @default.
- W3118443404 cites W2804894055 @default.
- W3118443404 cites W2805669948 @default.
- W3118443404 cites W2904233594 @default.
- W3118443404 cites W2905091597 @default.
- W3118443404 cites W2907128697 @default.
- W3118443404 cites W2907813850 @default.
- W3118443404 cites W2907999768 @default.
- W3118443404 cites W2908805909 @default.
- W3118443404 cites W2912206832 @default.
- W3118443404 cites W2917966621 @default.
- W3118443404 cites W2925550808 @default.
- W3118443404 cites W2937516424 @default.
- W3118443404 cites W2938274198 @default.
- W3118443404 cites W2963397652 @default.
- W3118443404 cites W2973268958 @default.
- W3118443404 cites W2983050038 @default.
- W3118443404 cites W3001565802 @default.
- W3118443404 cites W3023078624 @default.
- W3118443404 cites W3034976380 @default.
- W3118443404 cites W3035485882 @default.
- W3118443404 cites W400047476 @default.
- W3118443404 cites W4232514520 @default.
- W3118443404 doi "https://doi.org/10.1016/j.jclepro.2021.125871" @default.