Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118451531> ?p ?o ?g. }
- W3118451531 endingPage "1483" @default.
- W3118451531 startingPage "1471" @default.
- W3118451531 abstract "Abstract Interactions between light and matter during short-pulse laser materials processing are highly nonlinear, and hence acutely sensitive to laser parameters such as the pulse energy, repetition rate, and number of pulses used. Due to this complexity, simulation approaches based on calculation of the underlying physical principles can often only provide a qualitative understanding of the inter-relationships between these parameters. An alternative approach such as parameter optimisation, often requires a systematic and hence time-consuming experimental exploration over the available parameter space. Here, we apply neural networks for parameter optimisation and for predictive visualisation of expected outcomes in laser surface texturing with blind vias for tribology control applications. Critically, this method greatly reduces the amount of experimental laser machining data that is needed and associated development time, without negatively impacting accuracy or performance. The techniques presented here could be applied in a wide range of fields and have the potential to significantly reduce the time, and the costs associated with laser process optimisation." @default.
- W3118451531 created "2021-01-18" @default.
- W3118451531 creator A5008644025 @default.
- W3118451531 creator A5031855929 @default.
- W3118451531 creator A5042117395 @default.
- W3118451531 creator A5055964296 @default.
- W3118451531 creator A5072408376 @default.
- W3118451531 creator A5080337562 @default.
- W3118451531 creator A5081631274 @default.
- W3118451531 creator A5089120111 @default.
- W3118451531 date "2021-01-11" @default.
- W3118451531 modified "2023-10-14" @default.
- W3118451531 title "Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining" @default.
- W3118451531 cites W1901129140 @default.
- W3118451531 cites W1964345795 @default.
- W3118451531 cites W1970207992 @default.
- W3118451531 cites W1977862411 @default.
- W3118451531 cites W1983714738 @default.
- W3118451531 cites W1986305348 @default.
- W3118451531 cites W1999776728 @default.
- W3118451531 cites W2011909989 @default.
- W3118451531 cites W2014579138 @default.
- W3118451531 cites W2019019172 @default.
- W3118451531 cites W2019133685 @default.
- W3118451531 cites W2028009540 @default.
- W3118451531 cites W2029903316 @default.
- W3118451531 cites W2033035400 @default.
- W3118451531 cites W2035246166 @default.
- W3118451531 cites W2052939368 @default.
- W3118451531 cites W2083269735 @default.
- W3118451531 cites W2088136150 @default.
- W3118451531 cites W2088897029 @default.
- W3118451531 cites W2114665955 @default.
- W3118451531 cites W2127633046 @default.
- W3118451531 cites W2250461676 @default.
- W3118451531 cites W2280678016 @default.
- W3118451531 cites W2305666910 @default.
- W3118451531 cites W2334484203 @default.
- W3118451531 cites W2513156290 @default.
- W3118451531 cites W2616433584 @default.
- W3118451531 cites W2766196346 @default.
- W3118451531 cites W2777299243 @default.
- W3118451531 cites W2777428895 @default.
- W3118451531 cites W2792302392 @default.
- W3118451531 cites W2800722845 @default.
- W3118451531 cites W2809096091 @default.
- W3118451531 cites W2886079509 @default.
- W3118451531 cites W2888663528 @default.
- W3118451531 cites W2889053548 @default.
- W3118451531 cites W2902390267 @default.
- W3118451531 cites W2948317762 @default.
- W3118451531 cites W2962770929 @default.
- W3118451531 cites W2962793481 @default.
- W3118451531 cites W2963073614 @default.
- W3118451531 cites W2963470893 @default.
- W3118451531 cites W2979798188 @default.
- W3118451531 cites W2989368580 @default.
- W3118451531 cites W3004754590 @default.
- W3118451531 cites W3007934944 @default.
- W3118451531 cites W3093862428 @default.
- W3118451531 cites W3097663992 @default.
- W3118451531 cites W4243584799 @default.
- W3118451531 doi "https://doi.org/10.1007/s10845-020-01717-4" @default.
- W3118451531 hasPublicationYear "2021" @default.
- W3118451531 type Work @default.
- W3118451531 sameAs 3118451531 @default.
- W3118451531 citedByCount "23" @default.
- W3118451531 countsByYear W31184515312021 @default.
- W3118451531 countsByYear W31184515312022 @default.
- W3118451531 countsByYear W31184515312023 @default.
- W3118451531 crossrefType "journal-article" @default.
- W3118451531 hasAuthorship W3118451531A5008644025 @default.
- W3118451531 hasAuthorship W3118451531A5031855929 @default.
- W3118451531 hasAuthorship W3118451531A5042117395 @default.
- W3118451531 hasAuthorship W3118451531A5055964296 @default.
- W3118451531 hasAuthorship W3118451531A5072408376 @default.
- W3118451531 hasAuthorship W3118451531A5080337562 @default.
- W3118451531 hasAuthorship W3118451531A5081631274 @default.
- W3118451531 hasAuthorship W3118451531A5089120111 @default.
- W3118451531 hasBestOaLocation W31184515311 @default.
- W3118451531 hasConcept C111919701 @default.
- W3118451531 hasConcept C120665830 @default.
- W3118451531 hasConcept C121332964 @default.
- W3118451531 hasConcept C127413603 @default.
- W3118451531 hasConcept C154945302 @default.
- W3118451531 hasConcept C158622935 @default.
- W3118451531 hasConcept C159985019 @default.
- W3118451531 hasConcept C172205157 @default.
- W3118451531 hasConcept C192562407 @default.
- W3118451531 hasConcept C204323151 @default.
- W3118451531 hasConcept C2775924081 @default.
- W3118451531 hasConcept C2780167933 @default.
- W3118451531 hasConcept C36464697 @default.
- W3118451531 hasConcept C41008148 @default.
- W3118451531 hasConcept C50644808 @default.
- W3118451531 hasConcept C520434653 @default.
- W3118451531 hasConcept C523214423 @default.
- W3118451531 hasConcept C62520636 @default.