Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118479852> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3118479852 abstract "Bayesian learning is a powerful learning framework which combines the external information of the data (background information) with the internal information (training data) in a logically consistent way in inference and prediction. By Bayes rule, the external information (prior distribution) and the internal information (training data likelihood) are combined coherently, and the posterior distribution and the posterior predictive (marginal) distribution obtained by Bayes rule summarize the total information needed in the inference and prediction, respectively. In this paper, we study the Bayesian framework of the Tensor Network from two perspective. First, we introduce the prior distribution to the weights in the Tensor Network and predict the labels of the new observations by the posterior predictive (marginal) distribution. Since the intractability of the parameter integral in the normalization constant computation, we approximate the posterior predictive distribution by Laplace approximation and obtain the out-product approximation of the hessian matrix of the posterior distribution of the Tensor Network model. Second, to estimate the parameters of the stationary mode, we propose a stable initialization trick to accelerate the inference process by which the Tensor Network can converge to the stationary path more efficiently and stably with gradient descent method. We verify our work on the MNIST, Phishing Website and Breast Cancer data set. We study the Bayesian properties of the Bayesian Tensor Network by visualizing the parameters of the model and the decision boundaries in the two dimensional synthetic data set. For a application purpose, our work can reduce the overfitting and improve the performance of normal Tensor Network model." @default.
- W3118479852 created "2021-01-18" @default.
- W3118479852 creator A5001965218 @default.
- W3118479852 creator A5036161607 @default.
- W3118479852 date "2021-01-01" @default.
- W3118479852 modified "2023-09-27" @default.
- W3118479852 title "The Bayesian Method of Tensor Networks" @default.
- W3118479852 cites W1488022545 @default.
- W3118479852 cites W1533861849 @default.
- W3118479852 cites W1536929369 @default.
- W3118479852 cites W1538131130 @default.
- W3118479852 cites W1567512734 @default.
- W3118479852 cites W1592410721 @default.
- W3118479852 cites W1677182931 @default.
- W3118479852 cites W1719489212 @default.
- W3118479852 cites W2064675550 @default.
- W3118479852 cites W2085040216 @default.
- W3118479852 cites W2095304671 @default.
- W3118479852 cites W2127498532 @default.
- W3118479852 cites W2136922672 @default.
- W3118479852 cites W2150717117 @default.
- W3118479852 cites W2156297475 @default.
- W3118479852 cites W2182720859 @default.
- W3118479852 cites W2551156993 @default.
- W3118479852 cites W2727300753 @default.
- W3118479852 cites W2766678531 @default.
- W3118479852 cites W2911546748 @default.
- W3118479852 cites W2912840834 @default.
- W3118479852 cites W2919115771 @default.
- W3118479852 cites W2951004968 @default.
- W3118479852 cites W2951266961 @default.
- W3118479852 cites W2952689122 @default.
- W3118479852 cites W2970971315 @default.
- W3118479852 cites W2971043187 @default.
- W3118479852 cites W2994872659 @default.
- W3118479852 cites W3015983231 @default.
- W3118479852 cites W3103945605 @default.
- W3118479852 cites W3120740533 @default.
- W3118479852 hasPublicationYear "2021" @default.
- W3118479852 type Work @default.
- W3118479852 sameAs 3118479852 @default.
- W3118479852 citedByCount "1" @default.
- W3118479852 countsByYear W31184798522021 @default.
- W3118479852 crossrefType "posted-content" @default.
- W3118479852 hasAuthorship W3118479852A5001965218 @default.
- W3118479852 hasAuthorship W3118479852A5036161607 @default.
- W3118479852 hasConcept C107673813 @default.
- W3118479852 hasConcept C11413529 @default.
- W3118479852 hasConcept C119857082 @default.
- W3118479852 hasConcept C154945302 @default.
- W3118479852 hasConcept C22019652 @default.
- W3118479852 hasConcept C33923547 @default.
- W3118479852 hasConcept C41008148 @default.
- W3118479852 hasConcept C50644808 @default.
- W3118479852 hasConcept C57830394 @default.
- W3118479852 hasConcept C95923904 @default.
- W3118479852 hasConceptScore W3118479852C107673813 @default.
- W3118479852 hasConceptScore W3118479852C11413529 @default.
- W3118479852 hasConceptScore W3118479852C119857082 @default.
- W3118479852 hasConceptScore W3118479852C154945302 @default.
- W3118479852 hasConceptScore W3118479852C22019652 @default.
- W3118479852 hasConceptScore W3118479852C33923547 @default.
- W3118479852 hasConceptScore W3118479852C41008148 @default.
- W3118479852 hasConceptScore W3118479852C50644808 @default.
- W3118479852 hasConceptScore W3118479852C57830394 @default.
- W3118479852 hasConceptScore W3118479852C95923904 @default.
- W3118479852 hasLocation W31184798521 @default.
- W3118479852 hasOpenAccess W3118479852 @default.
- W3118479852 hasPrimaryLocation W31184798521 @default.
- W3118479852 hasRelatedWork W1579851208 @default.
- W3118479852 hasRelatedWork W1936374606 @default.
- W3118479852 hasRelatedWork W1968994649 @default.
- W3118479852 hasRelatedWork W2096533120 @default.
- W3118479852 hasRelatedWork W2151490080 @default.
- W3118479852 hasRelatedWork W2170808337 @default.
- W3118479852 hasRelatedWork W2794065264 @default.
- W3118479852 hasRelatedWork W2809750269 @default.
- W3118479852 hasRelatedWork W2890850160 @default.
- W3118479852 hasRelatedWork W2921493009 @default.
- W3118479852 hasRelatedWork W2930029601 @default.
- W3118479852 hasRelatedWork W2940817393 @default.
- W3118479852 hasRelatedWork W2946536216 @default.
- W3118479852 hasRelatedWork W2949177905 @default.
- W3118479852 hasRelatedWork W2952715870 @default.
- W3118479852 hasRelatedWork W2963059527 @default.
- W3118479852 hasRelatedWork W2963649956 @default.
- W3118479852 hasRelatedWork W2966294393 @default.
- W3118479852 hasRelatedWork W3122592241 @default.
- W3118479852 hasRelatedWork W3206748273 @default.
- W3118479852 isParatext "false" @default.
- W3118479852 isRetracted "false" @default.
- W3118479852 magId "3118479852" @default.
- W3118479852 workType "article" @default.