Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118502753> ?p ?o ?g. }
- W3118502753 abstract "In this paper, a novel framework is proposed to enable a predictive deployment of unmanned aerial vehicles (UAVs) as temporary base stations (BSs) to complement ground cellular systems in face of downlink traffic overload. First, a novel learning approach, based on the weighted expectation maximization (WEM) algorithm, is proposed to estimate the user distribution and the downlink traffic demand. Next, to guarantee a truthful information exchange between the BS and UAVs, using the framework of contract theory, an offload contract is developed, and the sufficient and necessary conditions for having a feasible contract are analytically derived. Subsequently, an optimization problem is formulated to deploy an optimal UAV onto the hotspot area in a way that the utility of the overloaded BS is maximized. Simulation results show that the proposed WEM approach yields a prediction error of around 10%. Compared with the expectation maximization and k-mean approaches, the WEM method shows a significant advantage on the prediction accuracy, as the traffic load in the cellular system becomes spatially uneven. Furthermore, compared with two event-driven deployment schemes based on the closest-distance and maximal-energy metrics, the proposed predictive approach enables UAV operators to provide efficient communication service for hotspot users in terms of the downlink capacity, energy consumption and service delay. Simulation results also show that the proposed method significantly improves the revenues of both the BS and UAV networks, compared with two baseline schemes." @default.
- W3118502753 created "2021-01-18" @default.
- W3118502753 creator A5024108653 @default.
- W3118502753 creator A5037352804 @default.
- W3118502753 creator A5050071819 @default.
- W3118502753 creator A5056145687 @default.
- W3118502753 creator A5061429095 @default.
- W3118502753 creator A5083120697 @default.
- W3118502753 date "2018-11-02" @default.
- W3118502753 modified "2023-10-16" @default.
- W3118502753 title "Predictive Deployment of UAV Base Stations in Wireless Networks: Machine Learning Meets Contract Theory" @default.
- W3118502753 cites W1988456768 @default.
- W3118502753 cites W2031834036 @default.
- W3118502753 cites W2289204537 @default.
- W3118502753 cites W2340982237 @default.
- W3118502753 cites W2514674767 @default.
- W3118502753 cites W2525822866 @default.
- W3118502753 cites W2604830243 @default.
- W3118502753 cites W2619209761 @default.
- W3118502753 cites W2645656290 @default.
- W3118502753 cites W2735793369 @default.
- W3118502753 cites W2772265751 @default.
- W3118502753 cites W2790256744 @default.
- W3118502753 cites W2803834024 @default.
- W3118502753 cites W2810640960 @default.
- W3118502753 cites W2912719095 @default.
- W3118502753 cites W2955338161 @default.
- W3118502753 cites W2962684895 @default.
- W3118502753 cites W2962691117 @default.
- W3118502753 cites W2962991278 @default.
- W3118502753 cites W2963389592 @default.
- W3118502753 cites W2963494324 @default.
- W3118502753 cites W2963638537 @default.
- W3118502753 cites W2963686678 @default.
- W3118502753 cites W2963721752 @default.
- W3118502753 cites W2964023906 @default.
- W3118502753 cites W2964220104 @default.
- W3118502753 cites W2964313027 @default.
- W3118502753 cites W2981096252 @default.
- W3118502753 cites W3100608448 @default.
- W3118502753 cites W3102880088 @default.
- W3118502753 doi "https://doi.org/10.48550/arxiv.1811.01149" @default.
- W3118502753 hasPublicationYear "2018" @default.
- W3118502753 type Work @default.
- W3118502753 sameAs 3118502753 @default.
- W3118502753 citedByCount "4" @default.
- W3118502753 countsByYear W31185027532019 @default.
- W3118502753 countsByYear W31185027532021 @default.
- W3118502753 countsByYear W31185027532022 @default.
- W3118502753 countsByYear W31185027532023 @default.
- W3118502753 crossrefType "posted-content" @default.
- W3118502753 hasAuthorship W3118502753A5024108653 @default.
- W3118502753 hasAuthorship W3118502753A5037352804 @default.
- W3118502753 hasAuthorship W3118502753A5050071819 @default.
- W3118502753 hasAuthorship W3118502753A5056145687 @default.
- W3118502753 hasAuthorship W3118502753A5061429095 @default.
- W3118502753 hasAuthorship W3118502753A5083120697 @default.
- W3118502753 hasBestOaLocation W31185027531 @default.
- W3118502753 hasConcept C105339364 @default.
- W3118502753 hasConcept C111368507 @default.
- W3118502753 hasConcept C111919701 @default.
- W3118502753 hasConcept C126255220 @default.
- W3118502753 hasConcept C12725497 @default.
- W3118502753 hasConcept C127313418 @default.
- W3118502753 hasConcept C138660444 @default.
- W3118502753 hasConcept C2776330181 @default.
- W3118502753 hasConcept C31258907 @default.
- W3118502753 hasConcept C33923547 @default.
- W3118502753 hasConcept C41008148 @default.
- W3118502753 hasConcept C555944384 @default.
- W3118502753 hasConcept C68649174 @default.
- W3118502753 hasConcept C76155785 @default.
- W3118502753 hasConcept C79403827 @default.
- W3118502753 hasConceptScore W3118502753C105339364 @default.
- W3118502753 hasConceptScore W3118502753C111368507 @default.
- W3118502753 hasConceptScore W3118502753C111919701 @default.
- W3118502753 hasConceptScore W3118502753C126255220 @default.
- W3118502753 hasConceptScore W3118502753C12725497 @default.
- W3118502753 hasConceptScore W3118502753C127313418 @default.
- W3118502753 hasConceptScore W3118502753C138660444 @default.
- W3118502753 hasConceptScore W3118502753C2776330181 @default.
- W3118502753 hasConceptScore W3118502753C31258907 @default.
- W3118502753 hasConceptScore W3118502753C33923547 @default.
- W3118502753 hasConceptScore W3118502753C41008148 @default.
- W3118502753 hasConceptScore W3118502753C555944384 @default.
- W3118502753 hasConceptScore W3118502753C68649174 @default.
- W3118502753 hasConceptScore W3118502753C76155785 @default.
- W3118502753 hasConceptScore W3118502753C79403827 @default.
- W3118502753 hasFunder F4320306076 @default.
- W3118502753 hasLocation W31185027531 @default.
- W3118502753 hasLocation W31185027532 @default.
- W3118502753 hasOpenAccess W3118502753 @default.
- W3118502753 hasPrimaryLocation W31185027531 @default.
- W3118502753 hasRelatedWork W2023335474 @default.
- W3118502753 hasRelatedWork W2031209902 @default.
- W3118502753 hasRelatedWork W2062000094 @default.
- W3118502753 hasRelatedWork W2103870217 @default.
- W3118502753 hasRelatedWork W2133279137 @default.
- W3118502753 hasRelatedWork W2139244120 @default.
- W3118502753 hasRelatedWork W2908165562 @default.