Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118554961> ?p ?o ?g. }
- W3118554961 endingPage "8463" @default.
- W3118554961 startingPage "8451" @default.
- W3118554961 abstract "A maximum likelihood estimator is presented for self-calibrating both accelerometers and gyroscopes in an inertial sensor array, including scale factors, misalignments, biases, and sensor positions. By simultaneous estimation of the calibration parameters and the motion dynamics of the array, external equipment is not required for the method. A computational efficient iterative optimization method is proposed where the calibration problem is divided into smaller subproblems. Further, an identifiability analysis of the calibration problem is presented. The analysis shows that it is sufficient to know the magnitude of the local gravity vector and the average scale factor gain of the gyroscopes, and that the array is exposed to two types of motions for the calibration problem to be well defined. The proposed estimator is evaluated by real-world experiments and by Monte Carlo simulations. The results show that the parameters can be consistently estimated and that the calibration significantly improves the accuracy of the motion estimation. This enables on-the-fly calibration of small inertial sensors arrays by simply twisting them by hand." @default.
- W3118554961 created "2021-01-18" @default.
- W3118554961 creator A5039385940 @default.
- W3118554961 creator A5057769293 @default.
- W3118554961 creator A5059936184 @default.
- W3118554961 date "2021-03-15" @default.
- W3118554961 modified "2023-10-13" @default.
- W3118554961 title "Self-Calibration of Inertial Sensor Arrays" @default.
- W3118554961 cites W1569116522 @default.
- W3118554961 cites W1994559856 @default.
- W3118554961 cites W2000769684 @default.
- W3118554961 cites W2003478444 @default.
- W3118554961 cites W2010010624 @default.
- W3118554961 cites W2035179658 @default.
- W3118554961 cites W2041767515 @default.
- W3118554961 cites W2044394043 @default.
- W3118554961 cites W2050348266 @default.
- W3118554961 cites W2065016297 @default.
- W3118554961 cites W2073614333 @default.
- W3118554961 cites W2075345242 @default.
- W3118554961 cites W2092597637 @default.
- W3118554961 cites W2093790790 @default.
- W3118554961 cites W2120356803 @default.
- W3118554961 cites W2133665906 @default.
- W3118554961 cites W2146768821 @default.
- W3118554961 cites W2150897308 @default.
- W3118554961 cites W2164184994 @default.
- W3118554961 cites W2169765128 @default.
- W3118554961 cites W2174985166 @default.
- W3118554961 cites W2178753845 @default.
- W3118554961 cites W2289637024 @default.
- W3118554961 cites W2337486992 @default.
- W3118554961 cites W2340525930 @default.
- W3118554961 cites W2491783527 @default.
- W3118554961 cites W2549738548 @default.
- W3118554961 cites W2606904518 @default.
- W3118554961 cites W2745007981 @default.
- W3118554961 cites W2768152802 @default.
- W3118554961 cites W2922356114 @default.
- W3118554961 cites W2938379634 @default.
- W3118554961 cites W2983921147 @default.
- W3118554961 cites W3036561344 @default.
- W3118554961 cites W3104978629 @default.
- W3118554961 cites W4250589301 @default.
- W3118554961 doi "https://doi.org/10.1109/jsen.2021.3050010" @default.
- W3118554961 hasPublicationYear "2021" @default.
- W3118554961 type Work @default.
- W3118554961 sameAs 3118554961 @default.
- W3118554961 citedByCount "8" @default.
- W3118554961 countsByYear W31185549612021 @default.
- W3118554961 countsByYear W31185549612022 @default.
- W3118554961 countsByYear W31185549612023 @default.
- W3118554961 crossrefType "journal-article" @default.
- W3118554961 hasAuthorship W3118554961A5039385940 @default.
- W3118554961 hasAuthorship W3118554961A5057769293 @default.
- W3118554961 hasAuthorship W3118554961A5059936184 @default.
- W3118554961 hasConcept C105795698 @default.
- W3118554961 hasConcept C111919701 @default.
- W3118554961 hasConcept C119857082 @default.
- W3118554961 hasConcept C121332964 @default.
- W3118554961 hasConcept C122770356 @default.
- W3118554961 hasConcept C128651787 @default.
- W3118554961 hasConcept C144386022 @default.
- W3118554961 hasConcept C154945302 @default.
- W3118554961 hasConcept C158488048 @default.
- W3118554961 hasConcept C165838908 @default.
- W3118554961 hasConcept C172790937 @default.
- W3118554961 hasConcept C173386949 @default.
- W3118554961 hasConcept C185429906 @default.
- W3118554961 hasConcept C19499675 @default.
- W3118554961 hasConcept C20154449 @default.
- W3118554961 hasConcept C26405456 @default.
- W3118554961 hasConcept C2775924081 @default.
- W3118554961 hasConcept C33923547 @default.
- W3118554961 hasConcept C41008148 @default.
- W3118554961 hasConcept C47446073 @default.
- W3118554961 hasConcept C62520636 @default.
- W3118554961 hasConcept C79061980 @default.
- W3118554961 hasConcept C89805583 @default.
- W3118554961 hasConceptScore W3118554961C105795698 @default.
- W3118554961 hasConceptScore W3118554961C111919701 @default.
- W3118554961 hasConceptScore W3118554961C119857082 @default.
- W3118554961 hasConceptScore W3118554961C121332964 @default.
- W3118554961 hasConceptScore W3118554961C122770356 @default.
- W3118554961 hasConceptScore W3118554961C128651787 @default.
- W3118554961 hasConceptScore W3118554961C144386022 @default.
- W3118554961 hasConceptScore W3118554961C154945302 @default.
- W3118554961 hasConceptScore W3118554961C158488048 @default.
- W3118554961 hasConceptScore W3118554961C165838908 @default.
- W3118554961 hasConceptScore W3118554961C172790937 @default.
- W3118554961 hasConceptScore W3118554961C173386949 @default.
- W3118554961 hasConceptScore W3118554961C185429906 @default.
- W3118554961 hasConceptScore W3118554961C19499675 @default.
- W3118554961 hasConceptScore W3118554961C20154449 @default.
- W3118554961 hasConceptScore W3118554961C26405456 @default.
- W3118554961 hasConceptScore W3118554961C2775924081 @default.
- W3118554961 hasConceptScore W3118554961C33923547 @default.
- W3118554961 hasConceptScore W3118554961C41008148 @default.