Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118642024> ?p ?o ?g. }
- W3118642024 endingPage "2206" @default.
- W3118642024 startingPage "2200" @default.
- W3118642024 abstract "The predicted liquid chromatographic retention times (RTs) of small molecules are not accurate enough for wide adoption in structural identification. In this study, we used the graph neural network to predict the retention time (GNN-RT) from structures of small molecules directly without the requirement of molecular descriptors. The predicted accuracy of GNN-RT was compared with random forests (RFs), Bayesian ridge regression, convolutional neural network (CNN), and a deep-learning regression model (DLM) on a METLIN small molecule retention time (SMRT) dataset. GNN-RT achieved the highest predicting accuracy with a mean relative error of 4.9% and a median relative error of 3.2%. Furthermore, the SMRT-trained GNN-RT model can be transferred to the same type of chromatographic systems easily. The predicted RT is valuable for structural identification in complementary to tandem mass spectra and can be used to assist in the identification of compounds. The results indicate that GNN-RT is a promising method to predict the RT for liquid chromatography and improve the accuracy of structural identification for small molecules." @default.
- W3118642024 created "2021-01-18" @default.
- W3118642024 creator A5004690469 @default.
- W3118642024 creator A5055546418 @default.
- W3118642024 creator A5055786412 @default.
- W3118642024 creator A5078767303 @default.
- W3118642024 date "2021-01-07" @default.
- W3118642024 modified "2023-10-18" @default.
- W3118642024 title "Prediction of Liquid Chromatographic Retention Time with Graph Neural Networks to Assist in Small Molecule Identification" @default.
- W3118642024 cites W1508604947 @default.
- W3118642024 cites W1761777809 @default.
- W3118642024 cites W1964010911 @default.
- W3118642024 cites W1989299822 @default.
- W3118642024 cites W1995543670 @default.
- W3118642024 cites W2009110937 @default.
- W3118642024 cites W2015503332 @default.
- W3118642024 cites W2016723506 @default.
- W3118642024 cites W2052388444 @default.
- W3118642024 cites W2059327215 @default.
- W3118642024 cites W2070016412 @default.
- W3118642024 cites W2070977314 @default.
- W3118642024 cites W2084339286 @default.
- W3118642024 cites W2089632603 @default.
- W3118642024 cites W2101394823 @default.
- W3118642024 cites W2114754207 @default.
- W3118642024 cites W2116341502 @default.
- W3118642024 cites W2125899377 @default.
- W3118642024 cites W2136922672 @default.
- W3118642024 cites W2139383454 @default.
- W3118642024 cites W2147800946 @default.
- W3118642024 cites W2165681080 @default.
- W3118642024 cites W2165698076 @default.
- W3118642024 cites W2175158758 @default.
- W3118642024 cites W2179948434 @default.
- W3118642024 cites W2265106087 @default.
- W3118642024 cites W2285468881 @default.
- W3118642024 cites W2289191408 @default.
- W3118642024 cites W2290847742 @default.
- W3118642024 cites W2414495899 @default.
- W3118642024 cites W2473139211 @default.
- W3118642024 cites W2510334816 @default.
- W3118642024 cites W2519747900 @default.
- W3118642024 cites W2560493283 @default.
- W3118642024 cites W2606042658 @default.
- W3118642024 cites W2626553651 @default.
- W3118642024 cites W2761434131 @default.
- W3118642024 cites W2781246871 @default.
- W3118642024 cites W2786394271 @default.
- W3118642024 cites W2789212481 @default.
- W3118642024 cites W2792165586 @default.
- W3118642024 cites W2809583854 @default.
- W3118642024 cites W2860192827 @default.
- W3118642024 cites W2885520603 @default.
- W3118642024 cites W2914609306 @default.
- W3118642024 cites W2919115771 @default.
- W3118642024 cites W2938756926 @default.
- W3118642024 cites W2951891306 @default.
- W3118642024 cites W2964679607 @default.
- W3118642024 cites W2996714860 @default.
- W3118642024 cites W3015831215 @default.
- W3118642024 cites W3021129126 @default.
- W3118642024 cites W305858006 @default.
- W3118642024 cites W4231109964 @default.
- W3118642024 doi "https://doi.org/10.1021/acs.analchem.0c04071" @default.
- W3118642024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33406817" @default.
- W3118642024 hasPublicationYear "2021" @default.
- W3118642024 type Work @default.
- W3118642024 sameAs 3118642024 @default.
- W3118642024 citedByCount "47" @default.
- W3118642024 countsByYear W31186420242021 @default.
- W3118642024 countsByYear W31186420242022 @default.
- W3118642024 countsByYear W31186420242023 @default.
- W3118642024 crossrefType "journal-article" @default.
- W3118642024 hasAuthorship W3118642024A5004690469 @default.
- W3118642024 hasAuthorship W3118642024A5055546418 @default.
- W3118642024 hasAuthorship W3118642024A5055786412 @default.
- W3118642024 hasAuthorship W3118642024A5078767303 @default.
- W3118642024 hasConcept C116834253 @default.
- W3118642024 hasConcept C132525143 @default.
- W3118642024 hasConcept C154945302 @default.
- W3118642024 hasConcept C185592680 @default.
- W3118642024 hasConcept C3020018676 @default.
- W3118642024 hasConcept C41008148 @default.
- W3118642024 hasConcept C43617362 @default.
- W3118642024 hasConcept C50644808 @default.
- W3118642024 hasConcept C59822182 @default.
- W3118642024 hasConcept C80444323 @default.
- W3118642024 hasConcept C86803240 @default.
- W3118642024 hasConceptScore W3118642024C116834253 @default.
- W3118642024 hasConceptScore W3118642024C132525143 @default.
- W3118642024 hasConceptScore W3118642024C154945302 @default.
- W3118642024 hasConceptScore W3118642024C185592680 @default.
- W3118642024 hasConceptScore W3118642024C3020018676 @default.
- W3118642024 hasConceptScore W3118642024C41008148 @default.
- W3118642024 hasConceptScore W3118642024C43617362 @default.
- W3118642024 hasConceptScore W3118642024C50644808 @default.
- W3118642024 hasConceptScore W3118642024C59822182 @default.
- W3118642024 hasConceptScore W3118642024C80444323 @default.