Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118643886> ?p ?o ?g. }
- W3118643886 endingPage "100295" @default.
- W3118643886 startingPage "100295" @default.
- W3118643886 abstract "Formulated products are complex mixtures of ingredients whose time to market can be difficult to speed due to the lack of general predictable physical models for the desired properties. Here, we report the coupling of a machine learning classification algorithm with the Thompson sampling efficient multiobjective optimization (TSEMO) algorithm for the simultaneous optimization of continuous and discrete outputs. The methodology is successfully applied to the design of a formulated liquid product of commercial interest for which no physical models are available. Experiments are carried out in a semiautomated fashion using robotic platforms triggered by the machine learning algorithms. The procedure allows one to find nine suitable recipes meeting the customer-defined criteria within 15 working days, outperforming human intuition in the target performance of the formulations." @default.
- W3118643886 created "2021-01-18" @default.
- W3118643886 creator A5009627378 @default.
- W3118643886 creator A5012933154 @default.
- W3118643886 creator A5027853980 @default.
- W3118643886 creator A5028323457 @default.
- W3118643886 creator A5043755695 @default.
- W3118643886 creator A5044831582 @default.
- W3118643886 creator A5059709827 @default.
- W3118643886 creator A5065798786 @default.
- W3118643886 creator A5075888371 @default.
- W3118643886 creator A5080902198 @default.
- W3118643886 date "2021-01-01" @default.
- W3118643886 modified "2023-10-16" @default.
- W3118643886 title "Optimization of Formulations Using Robotic Experiments Driven by Machine Learning DoE" @default.
- W3118643886 cites W1439116577 @default.
- W3118643886 cites W1672415507 @default.
- W3118643886 cites W1968046132 @default.
- W3118643886 cites W1979769287 @default.
- W3118643886 cites W1983065047 @default.
- W3118643886 cites W1983249544 @default.
- W3118643886 cites W1995875735 @default.
- W3118643886 cites W2000481746 @default.
- W3118643886 cites W2011819473 @default.
- W3118643886 cites W2013786203 @default.
- W3118643886 cites W2027215438 @default.
- W3118643886 cites W2041478093 @default.
- W3118643886 cites W2045293316 @default.
- W3118643886 cites W2051821221 @default.
- W3118643886 cites W2053161982 @default.
- W3118643886 cites W2071999689 @default.
- W3118643886 cites W2072734233 @default.
- W3118643886 cites W2075512541 @default.
- W3118643886 cites W2085281262 @default.
- W3118643886 cites W2098720801 @default.
- W3118643886 cites W2101423867 @default.
- W3118643886 cites W2111526171 @default.
- W3118643886 cites W2121963092 @default.
- W3118643886 cites W2126105956 @default.
- W3118643886 cites W2134136045 @default.
- W3118643886 cites W2155751766 @default.
- W3118643886 cites W2158327726 @default.
- W3118643886 cites W2268028234 @default.
- W3118643886 cites W2275268482 @default.
- W3118643886 cites W2442885681 @default.
- W3118643886 cites W2505990019 @default.
- W3118643886 cites W2537845408 @default.
- W3118643886 cites W2548304608 @default.
- W3118643886 cites W2739195381 @default.
- W3118643886 cites W2763089274 @default.
- W3118643886 cites W2788545772 @default.
- W3118643886 cites W2789553857 @default.
- W3118643886 cites W2811443445 @default.
- W3118643886 cites W2830440988 @default.
- W3118643886 cites W2900705276 @default.
- W3118643886 cites W2901655845 @default.
- W3118643886 cites W2902762889 @default.
- W3118643886 cites W2903010511 @default.
- W3118643886 cites W2946850705 @default.
- W3118643886 cites W2964525681 @default.
- W3118643886 cites W2984974618 @default.
- W3118643886 cites W2987724672 @default.
- W3118643886 cites W2995891886 @default.
- W3118643886 cites W3011445295 @default.
- W3118643886 cites W3016401366 @default.
- W3118643886 cites W3046960238 @default.
- W3118643886 doi "https://doi.org/10.1016/j.xcrp.2020.100295" @default.
- W3118643886 hasPublicationYear "2021" @default.
- W3118643886 type Work @default.
- W3118643886 sameAs 3118643886 @default.
- W3118643886 citedByCount "25" @default.
- W3118643886 countsByYear W31186438862021 @default.
- W3118643886 countsByYear W31186438862022 @default.
- W3118643886 countsByYear W31186438862023 @default.
- W3118643886 crossrefType "journal-article" @default.
- W3118643886 hasAuthorship W3118643886A5009627378 @default.
- W3118643886 hasAuthorship W3118643886A5012933154 @default.
- W3118643886 hasAuthorship W3118643886A5027853980 @default.
- W3118643886 hasAuthorship W3118643886A5028323457 @default.
- W3118643886 hasAuthorship W3118643886A5043755695 @default.
- W3118643886 hasAuthorship W3118643886A5044831582 @default.
- W3118643886 hasAuthorship W3118643886A5059709827 @default.
- W3118643886 hasAuthorship W3118643886A5065798786 @default.
- W3118643886 hasAuthorship W3118643886A5075888371 @default.
- W3118643886 hasAuthorship W3118643886A5080902198 @default.
- W3118643886 hasBestOaLocation W31186438861 @default.
- W3118643886 hasConcept C105795698 @default.
- W3118643886 hasConcept C111472728 @default.
- W3118643886 hasConcept C119857082 @default.
- W3118643886 hasConcept C126255220 @default.
- W3118643886 hasConcept C132010649 @default.
- W3118643886 hasConcept C138885662 @default.
- W3118643886 hasConcept C154945302 @default.
- W3118643886 hasConcept C33923547 @default.
- W3118643886 hasConcept C34559072 @default.
- W3118643886 hasConcept C41008148 @default.
- W3118643886 hasConceptScore W3118643886C105795698 @default.
- W3118643886 hasConceptScore W3118643886C111472728 @default.