Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118645866> ?p ?o ?g. }
- W3118645866 abstract "Small-incision lenticule extraction (SMILE) is a surgical procedure for the refractive correction of myopia and astigmatism, which has been reported as safe and effective. However, over- and under-correction still occur after SMILE. The necessity of nomograms is emphasized to achieve optimal refractive results. Ophthalmologists diagnose nomograms by analyzing the preoperative refractive data with their individual knowledge which they accumulate over years of experience. Our aim was to predict the nomograms of sphere, cylinder, and astigmatism axis for SMILE accurately by applying machine learning algorithm.We retrospectively analyzed the data of 3,034 eyes composed of four categorical features and 28 numerical features selected from 46 features. The multiple linear regression, decision tree, AdaBoost, XGBoost, and multi-layer perceptron were employed in developing the nomogram models for sphere, cylinder, and astigmatism axis. The scores of the root-mean-square error (RMSE) and accuracy were evaluated and compared. Subsequently, the feature importance of the best models was calculated.AdaBoost achieved the highest performance with RMSE of 0.1378, 0.1166, and 5.17 for the sphere, cylinder, and astigmatism axis, respectively. The accuracies of which error below 0.25 D for the sphere and cylinder nomograms and 25° for the astigmatism axis nomograms were 0.969, 0.976, and 0.994, respectively. The feature with the highest importance was preoperative manifest refraction for all the cases of nomograms. For the sphere and cylinder nomograms, the following highly important feature was the surgeon.Among the diverse machine learning algorithms, AdaBoost exhibited the highest performance in the prediction of the sphere, cylinder, and astigmatism axis nomograms for SMILE. The study proved the feasibility of applying artificial intelligence (AI) to nomograms for SMILE. Also, it may enhance the quality of the surgical result of SMILE by providing assistance in nomograms and preventing the misdiagnosis in nomograms." @default.
- W3118645866 created "2021-01-18" @default.
- W3118645866 creator A5009128954 @default.
- W3118645866 creator A5020116021 @default.
- W3118645866 creator A5024278227 @default.
- W3118645866 creator A5027143700 @default.
- W3118645866 creator A5045286653 @default.
- W3118645866 creator A5084134382 @default.
- W3118645866 creator A5091796975 @default.
- W3118645866 date "2021-04-23" @default.
- W3118645866 modified "2023-10-02" @default.
- W3118645866 title "Artificial intelligence-based nomogram for small-incision lenticule extraction" @default.
- W3118645866 cites W1489287868 @default.
- W3118645866 cites W1648769816 @default.
- W3118645866 cites W2004556554 @default.
- W3118645866 cites W2069103009 @default.
- W3118645866 cites W2078628337 @default.
- W3118645866 cites W2082635306 @default.
- W3118645866 cites W2161687040 @default.
- W3118645866 cites W2265359587 @default.
- W3118645866 cites W2277480787 @default.
- W3118645866 cites W2279048782 @default.
- W3118645866 cites W2312492142 @default.
- W3118645866 cites W2340513621 @default.
- W3118645866 cites W2477236865 @default.
- W3118645866 cites W2516885204 @default.
- W3118645866 cites W2552806983 @default.
- W3118645866 cites W2730039516 @default.
- W3118645866 cites W2765748290 @default.
- W3118645866 cites W2796549842 @default.
- W3118645866 cites W2810146939 @default.
- W3118645866 cites W2893997026 @default.
- W3118645866 cites W2898943231 @default.
- W3118645866 cites W2911964244 @default.
- W3118645866 cites W2919115771 @default.
- W3118645866 cites W2970258909 @default.
- W3118645866 cites W2981817449 @default.
- W3118645866 cites W3102476541 @default.
- W3118645866 cites W3102839947 @default.
- W3118645866 cites W55978497 @default.
- W3118645866 doi "https://doi.org/10.1186/s12938-021-00867-7" @default.
- W3118645866 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8063457" @default.
- W3118645866 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33892729" @default.
- W3118645866 hasPublicationYear "2021" @default.
- W3118645866 type Work @default.
- W3118645866 sameAs 3118645866 @default.
- W3118645866 citedByCount "3" @default.
- W3118645866 countsByYear W31186458662023 @default.
- W3118645866 crossrefType "journal-article" @default.
- W3118645866 hasAuthorship W3118645866A5009128954 @default.
- W3118645866 hasAuthorship W3118645866A5020116021 @default.
- W3118645866 hasAuthorship W3118645866A5024278227 @default.
- W3118645866 hasAuthorship W3118645866A5027143700 @default.
- W3118645866 hasAuthorship W3118645866A5045286653 @default.
- W3118645866 hasAuthorship W3118645866A5084134382 @default.
- W3118645866 hasAuthorship W3118645866A5091796975 @default.
- W3118645866 hasBestOaLocation W31186458661 @default.
- W3118645866 hasConcept C105795698 @default.
- W3118645866 hasConcept C109821595 @default.
- W3118645866 hasConcept C120665830 @default.
- W3118645866 hasConcept C121332964 @default.
- W3118645866 hasConcept C12267149 @default.
- W3118645866 hasConcept C139945424 @default.
- W3118645866 hasConcept C141404830 @default.
- W3118645866 hasConcept C154945302 @default.
- W3118645866 hasConcept C203311528 @default.
- W3118645866 hasConcept C2524010 @default.
- W3118645866 hasConcept C2776882836 @default.
- W3118645866 hasConcept C2777183516 @default.
- W3118645866 hasConcept C2778609529 @default.
- W3118645866 hasConcept C33923547 @default.
- W3118645866 hasConcept C34626388 @default.
- W3118645866 hasConcept C41008148 @default.
- W3118645866 hasConceptScore W3118645866C105795698 @default.
- W3118645866 hasConceptScore W3118645866C109821595 @default.
- W3118645866 hasConceptScore W3118645866C120665830 @default.
- W3118645866 hasConceptScore W3118645866C121332964 @default.
- W3118645866 hasConceptScore W3118645866C12267149 @default.
- W3118645866 hasConceptScore W3118645866C139945424 @default.
- W3118645866 hasConceptScore W3118645866C141404830 @default.
- W3118645866 hasConceptScore W3118645866C154945302 @default.
- W3118645866 hasConceptScore W3118645866C203311528 @default.
- W3118645866 hasConceptScore W3118645866C2524010 @default.
- W3118645866 hasConceptScore W3118645866C2776882836 @default.
- W3118645866 hasConceptScore W3118645866C2777183516 @default.
- W3118645866 hasConceptScore W3118645866C2778609529 @default.
- W3118645866 hasConceptScore W3118645866C33923547 @default.
- W3118645866 hasConceptScore W3118645866C34626388 @default.
- W3118645866 hasConceptScore W3118645866C41008148 @default.
- W3118645866 hasFunder F4320322107 @default.
- W3118645866 hasIssue "1" @default.
- W3118645866 hasLocation W31186458661 @default.
- W3118645866 hasLocation W31186458662 @default.
- W3118645866 hasLocation W31186458663 @default.
- W3118645866 hasLocation W31186458664 @default.
- W3118645866 hasLocation W31186458665 @default.
- W3118645866 hasOpenAccess W3118645866 @default.
- W3118645866 hasPrimaryLocation W31186458661 @default.
- W3118645866 hasRelatedWork W2061796253 @default.
- W3118645866 hasRelatedWork W2981817449 @default.