Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118674140> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3118674140 abstract "In order to characterize the degradation of solar modules, it is necessary to systematically recognize common signatures, such as cracks and corrosion. This information can be useful in a multitude of ways, such as comparing failure models of different brands or types of cells. The process of electroluminescence imaging can illuminate these signatures such that automated image processing techniques can identify them. Both supervised (via C.N.N.) and unsupervised models can be applied; the focus of this work is on improvement of the unsupervised approach. Feature extraction, a pivotal step to computer vision, is used to produce localized descriptions of relevant regions in an image. In order to identify features, numerous feature extraction algorithms, such as ORB [12] and FAST [11] have been applied, which yield feature vectors that are invariant to location, scale, and orientation, as opposed to Haralick features [4]. The resulting feature vectors can be clustered via hierarchical clustering and a bag of visual words can be constructed that can identify similar features across a sample set. This method allows clustering around a large number of unidentified features both apparent and non-obvious to human inspection, including cracking, busbar corrosion, and other common forms of degradation. The resultant model and code implementation can be used as a form of exploratory data analysis before labeling in preparation for supervised machine learning, or as a classifier on its own." @default.
- W3118674140 created "2021-01-18" @default.
- W3118674140 creator A5014974765 @default.
- W3118674140 creator A5018492285 @default.
- W3118674140 creator A5028285682 @default.
- W3118674140 creator A5087506938 @default.
- W3118674140 creator A5061465659 @default.
- W3118674140 date "2020-06-14" @default.
- W3118674140 modified "2023-09-24" @default.
- W3118674140 title "Identifying Degradation Modes of Photovoltaic Modules Using Unsupervised Machine Learning on Electroluminescense Images" @default.
- W3118674140 cites W1532362218 @default.
- W3118674140 cites W1984309565 @default.
- W3118674140 cites W2044465660 @default.
- W3118674140 cites W2111589119 @default.
- W3118674140 cites W2117228865 @default.
- W3118674140 cites W2151103935 @default.
- W3118674140 cites W2825063406 @default.
- W3118674140 cites W2903183643 @default.
- W3118674140 cites W2913429812 @default.
- W3118674140 cites W2953947605 @default.
- W3118674140 cites W3014582166 @default.
- W3118674140 doi "https://doi.org/10.1109/pvsc45281.2020.9301021" @default.
- W3118674140 hasPublicationYear "2020" @default.
- W3118674140 type Work @default.
- W3118674140 sameAs 3118674140 @default.
- W3118674140 citedByCount "3" @default.
- W3118674140 countsByYear W31186741402021 @default.
- W3118674140 countsByYear W31186741402022 @default.
- W3118674140 crossrefType "proceedings-article" @default.
- W3118674140 hasAuthorship W3118674140A5014974765 @default.
- W3118674140 hasAuthorship W3118674140A5018492285 @default.
- W3118674140 hasAuthorship W3118674140A5028285682 @default.
- W3118674140 hasAuthorship W3118674140A5061465659 @default.
- W3118674140 hasAuthorship W3118674140A5087506938 @default.
- W3118674140 hasConcept C119857082 @default.
- W3118674140 hasConcept C153180895 @default.
- W3118674140 hasConcept C154945302 @default.
- W3118674140 hasConcept C41008148 @default.
- W3118674140 hasConcept C52622490 @default.
- W3118674140 hasConcept C73555534 @default.
- W3118674140 hasConcept C8038995 @default.
- W3118674140 hasConcept C95623464 @default.
- W3118674140 hasConceptScore W3118674140C119857082 @default.
- W3118674140 hasConceptScore W3118674140C153180895 @default.
- W3118674140 hasConceptScore W3118674140C154945302 @default.
- W3118674140 hasConceptScore W3118674140C41008148 @default.
- W3118674140 hasConceptScore W3118674140C52622490 @default.
- W3118674140 hasConceptScore W3118674140C73555534 @default.
- W3118674140 hasConceptScore W3118674140C8038995 @default.
- W3118674140 hasConceptScore W3118674140C95623464 @default.
- W3118674140 hasFunder F4320308963 @default.
- W3118674140 hasLocation W31186741401 @default.
- W3118674140 hasOpenAccess W3118674140 @default.
- W3118674140 hasPrimaryLocation W31186741401 @default.
- W3118674140 hasRelatedWork W2929676662 @default.
- W3118674140 hasRelatedWork W3007915134 @default.
- W3118674140 hasRelatedWork W3046775127 @default.
- W3118674140 hasRelatedWork W3087576162 @default.
- W3118674140 hasRelatedWork W3095538999 @default.
- W3118674140 hasRelatedWork W3123344745 @default.
- W3118674140 hasRelatedWork W3170950703 @default.
- W3118674140 hasRelatedWork W3196155444 @default.
- W3118674140 hasRelatedWork W4281615271 @default.
- W3118674140 hasRelatedWork W4287665842 @default.
- W3118674140 isParatext "false" @default.
- W3118674140 isRetracted "false" @default.
- W3118674140 magId "3118674140" @default.
- W3118674140 workType "article" @default.