Matches in SemOpenAlex for { <https://semopenalex.org/work/W3118687205> ?p ?o ?g. }
- W3118687205 endingPage "6173" @default.
- W3118687205 startingPage "6165" @default.
- W3118687205 abstract "Recent learning-based approaches have achieved impressive results in the field of single-shot camera localization. However, how best to fuse multiple modalities (e.g., image and depth) and to deal with degraded or missing input are less well studied. In particular, we note that previous approaches towards deep fusion do not perform significantly better than models employing a single modality. We conjecture that this is because of the naive approaches to feature space fusion through summation or concatenation which do not take into account the different strengths of each modality. To address this, we propose an end-to-end framework, termed VMLoc, to fuse different sensor inputs into a common latent space through a variational Product-of-Experts (PoE) followed by attention-based fusion. Unlike previous multimodal variational works directly adapting the objective function of vanilla variational auto-encoder, we show how camera localization can be accurately estimated through an unbiased objective function based on importance weighting. Our model is extensively evaluated on RGB-D datasets and the results prove the efficacy of our model. The source code is available at https://github.com/Zalex97/VMLoc." @default.
- W3118687205 created "2021-01-18" @default.
- W3118687205 creator A5010637110 @default.
- W3118687205 creator A5030156598 @default.
- W3118687205 creator A5033986477 @default.
- W3118687205 creator A5060183988 @default.
- W3118687205 creator A5074431495 @default.
- W3118687205 creator A5078078782 @default.
- W3118687205 date "2021-05-18" @default.
- W3118687205 modified "2023-09-27" @default.
- W3118687205 title "VMLoc: Variational Fusion For Learning-Based Multimodal Camera Localization" @default.
- W3118687205 cites W1523444002 @default.
- W3118687205 cites W1959608418 @default.
- W3118687205 cites W1987488988 @default.
- W3118687205 cites W1989476314 @default.
- W3118687205 cites W2033819227 @default.
- W3118687205 cites W2079182758 @default.
- W3118687205 cites W2081605477 @default.
- W3118687205 cites W2112796928 @default.
- W3118687205 cites W2114594485 @default.
- W3118687205 cites W2159525276 @default.
- W3118687205 cites W2194775991 @default.
- W3118687205 cites W2200124539 @default.
- W3118687205 cites W2213387816 @default.
- W3118687205 cites W2216595815 @default.
- W3118687205 cites W2522940611 @default.
- W3118687205 cites W2556013083 @default.
- W3118687205 cites W2556455135 @default.
- W3118687205 cites W2558027072 @default.
- W3118687205 cites W2584731199 @default.
- W3118687205 cites W2602709638 @default.
- W3118687205 cites W2605111497 @default.
- W3118687205 cites W2750384547 @default.
- W3118687205 cites W2753738274 @default.
- W3118687205 cites W2795645133 @default.
- W3118687205 cites W2917551920 @default.
- W3118687205 cites W2919203733 @default.
- W3118687205 cites W2951349360 @default.
- W3118687205 cites W2951517617 @default.
- W3118687205 cites W2962947707 @default.
- W3118687205 cites W2963024893 @default.
- W3118687205 cites W2963117534 @default.
- W3118687205 cites W2963198154 @default.
- W3118687205 cites W2963275229 @default.
- W3118687205 cites W2963446624 @default.
- W3118687205 cites W2963856988 @default.
- W3118687205 cites W2963877604 @default.
- W3118687205 cites W2964002455 @default.
- W3118687205 cites W2970873268 @default.
- W3118687205 cites W2983230029 @default.
- W3118687205 cites W2984624776 @default.
- W3118687205 cites W2997032998 @default.
- W3118687205 cites W3099342433 @default.
- W3118687205 cites W3100811978 @default.
- W3118687205 cites W650778099 @default.
- W3118687205 doi "https://doi.org/10.1609/aaai.v35i7.16767" @default.
- W3118687205 hasPublicationYear "2021" @default.
- W3118687205 type Work @default.
- W3118687205 sameAs 3118687205 @default.
- W3118687205 citedByCount "6" @default.
- W3118687205 countsByYear W31186872052022 @default.
- W3118687205 countsByYear W31186872052023 @default.
- W3118687205 crossrefType "journal-article" @default.
- W3118687205 hasAuthorship W3118687205A5010637110 @default.
- W3118687205 hasAuthorship W3118687205A5030156598 @default.
- W3118687205 hasAuthorship W3118687205A5033986477 @default.
- W3118687205 hasAuthorship W3118687205A5060183988 @default.
- W3118687205 hasAuthorship W3118687205A5074431495 @default.
- W3118687205 hasAuthorship W3118687205A5078078782 @default.
- W3118687205 hasBestOaLocation W31186872051 @default.
- W3118687205 hasConcept C101738243 @default.
- W3118687205 hasConcept C108583219 @default.
- W3118687205 hasConcept C111919701 @default.
- W3118687205 hasConcept C114614502 @default.
- W3118687205 hasConcept C118505674 @default.
- W3118687205 hasConcept C119599485 @default.
- W3118687205 hasConcept C126838900 @default.
- W3118687205 hasConcept C127413603 @default.
- W3118687205 hasConcept C138885662 @default.
- W3118687205 hasConcept C14036430 @default.
- W3118687205 hasConcept C141353440 @default.
- W3118687205 hasConcept C153180895 @default.
- W3118687205 hasConcept C154945302 @default.
- W3118687205 hasConcept C158525013 @default.
- W3118687205 hasConcept C177264268 @default.
- W3118687205 hasConcept C183115368 @default.
- W3118687205 hasConcept C199360897 @default.
- W3118687205 hasConcept C2776401178 @default.
- W3118687205 hasConcept C2776760102 @default.
- W3118687205 hasConcept C2780226545 @default.
- W3118687205 hasConcept C31972630 @default.
- W3118687205 hasConcept C33923547 @default.
- W3118687205 hasConcept C41008148 @default.
- W3118687205 hasConcept C41895202 @default.
- W3118687205 hasConcept C71924100 @default.
- W3118687205 hasConcept C78458016 @default.
- W3118687205 hasConcept C86803240 @default.
- W3118687205 hasConcept C87619178 @default.